Tomáš Lávička, Tommaso Moraschini, James G. Raftery
{"title":"弱排除中间律的代数意义","authors":"Tomáš Lávička, Tommaso Moraschini, James G. Raftery","doi":"10.1002/malq.202100046","DOIUrl":null,"url":null,"abstract":"<p>For (finitary) deductive systems, we formulate a signature-independent abstraction of the <i>weak excluded middle law</i> (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math> algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math> has a greatest proper <math>\n <semantics>\n <mi>K</mi>\n <annotation>$\\mathsf {K}$</annotation>\n </semantics></math>-congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in a suitable form, to all protoalgebraic logics. A super-intuitionistic logic possesses a WEML iff it extends <math>\n <semantics>\n <mi>KC</mi>\n <annotation>$\\mathsf {KC}$</annotation>\n </semantics></math>. We characterize the IL and the WEML for normal modal logics and for relevance logics. A normal extension of <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>4</mn>\n </mrow>\n <annotation>$\\mathsf {S4}$</annotation>\n </semantics></math> has a global consequence relation with a WEML iff it extends <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mn>4</mn>\n <mo>.</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\mathsf {S4.2}$</annotation>\n </semantics></math>, while every axiomatic extension of <math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>t</mi>\n </msup>\n <annotation>$\\mathsf {R^t}$</annotation>\n </semantics></math> with an IL has a WEML.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The algebraic significance of weak excluded middle laws\",\"authors\":\"Tomáš Lávička, Tommaso Moraschini, James G. Raftery\",\"doi\":\"10.1002/malq.202100046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For (finitary) deductive systems, we formulate a signature-independent abstraction of the <i>weak excluded middle law</i> (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathsf {K}$</annotation>\\n </semantics></math> algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathsf {K}$</annotation>\\n </semantics></math> has a greatest proper <math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$\\\\mathsf {K}$</annotation>\\n </semantics></math>-congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in a suitable form, to all protoalgebraic logics. A super-intuitionistic logic possesses a WEML iff it extends <math>\\n <semantics>\\n <mi>KC</mi>\\n <annotation>$\\\\mathsf {KC}$</annotation>\\n </semantics></math>. We characterize the IL and the WEML for normal modal logics and for relevance logics. A normal extension of <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\mathsf {S4}$</annotation>\\n </semantics></math> has a global consequence relation with a WEML iff it extends <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mn>4</mn>\\n <mo>.</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$\\\\mathsf {S4.2}$</annotation>\\n </semantics></math>, while every axiomatic extension of <math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>t</mi>\\n </msup>\\n <annotation>$\\\\mathsf {R^t}$</annotation>\\n </semantics></math> with an IL has a WEML.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/malq.202100046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The algebraic significance of weak excluded middle laws
For (finitary) deductive systems, we formulate a signature-independent abstraction of the weak excluded middle law (WEML), which strengthens the existing general notion of an inconsistency lemma (IL). Of special interest is the case where a quasivariety algebraizes a deductive system ⊢. We prove that, in this case, if ⊢ has a WEML (in the general sense) then every relatively subdirectly irreducible member of has a greatest proper -congruence; the converse holds if ⊢ has an inconsistency lemma. The result extends, in a suitable form, to all protoalgebraic logics. A super-intuitionistic logic possesses a WEML iff it extends . We characterize the IL and the WEML for normal modal logics and for relevance logics. A normal extension of has a global consequence relation with a WEML iff it extends , while every axiomatic extension of with an IL has a WEML.