使用向量支持回归控制金属泡沫

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES
Alexis Sanabria-Castro, Marcela Meneses-Guzmán, Bruno Chiné-Polito
{"title":"使用向量支持回归控制金属泡沫","authors":"Alexis Sanabria-Castro, Marcela Meneses-Guzmán, Bruno Chiné-Polito","doi":"10.18845/tm.v36i1.5891","DOIUrl":null,"url":null,"abstract":"El monitoreo de perfiles se enfoca en aquellas variables de proceso o producto que son caracterizadas por una relación funcional de esta variable respecto del tiempo o el espacio. El objetivo de este trabajo es desarrollar una metodología basada en Regresión de Soporte Vectorial, SVR, para el monitoreo de perfiles no lineales, e implementarla a los perfiles de densidad de un material celular, espuma metálica de aluminio. La forma de un perfil en control está asociada a ciertas características mecánicas del producto, por lo que un cambio significativo de su forma seria detectado como un fuera de control por un método de monitoreo diseñado para este fin; si esto sucediera, se puede concluir que las propiedades mecánicas de la espuma son diferentes a las requeridas. La metodología considera el cálculo de curvas percentiles que serán la base para definir los límites de un gráfico de control, la estimación de parámetros del modelo de SVR con un Kernel Gausseano y con la ayuda de validación cruzada; se evalúa el desempeño del gráfico de control establecido apoyados en la técnica de boostrapping. El método propuesto es sencillo de interpretar y práctico. De acuerdo con los resultados, si la forma del perfil de densidad llegara a cambiar más allá de la indicada variabilidad natural del perfil, el método implementado lo detectaría como fuera de control con un error tipo I de 0.341% (ARLreal= 293).","PeriodicalId":42957,"journal":{"name":"Tecnologia en Marcha","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uso de regresión de soporte vectorial para el control de espuma metálica\",\"authors\":\"Alexis Sanabria-Castro, Marcela Meneses-Guzmán, Bruno Chiné-Polito\",\"doi\":\"10.18845/tm.v36i1.5891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"El monitoreo de perfiles se enfoca en aquellas variables de proceso o producto que son caracterizadas por una relación funcional de esta variable respecto del tiempo o el espacio. El objetivo de este trabajo es desarrollar una metodología basada en Regresión de Soporte Vectorial, SVR, para el monitoreo de perfiles no lineales, e implementarla a los perfiles de densidad de un material celular, espuma metálica de aluminio. La forma de un perfil en control está asociada a ciertas características mecánicas del producto, por lo que un cambio significativo de su forma seria detectado como un fuera de control por un método de monitoreo diseñado para este fin; si esto sucediera, se puede concluir que las propiedades mecánicas de la espuma son diferentes a las requeridas. La metodología considera el cálculo de curvas percentiles que serán la base para definir los límites de un gráfico de control, la estimación de parámetros del modelo de SVR con un Kernel Gausseano y con la ayuda de validación cruzada; se evalúa el desempeño del gráfico de control establecido apoyados en la técnica de boostrapping. El método propuesto es sencillo de interpretar y práctico. De acuerdo con los resultados, si la forma del perfil de densidad llegara a cambiar más allá de la indicada variabilidad natural del perfil, el método implementado lo detectaría como fuera de control con un error tipo I de 0.341% (ARLreal= 293).\",\"PeriodicalId\":42957,\"journal\":{\"name\":\"Tecnologia en Marcha\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnologia en Marcha\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18845/tm.v36i1.5891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnologia en Marcha","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18845/tm.v36i1.5891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

概要文件监控的重点是那些过程或产品变量,其特征是该变量在时间或空间方面的功能关系。本研究的目的是开发一种基于向量支持回归(SVR)的非线性剖面监测方法,并将其应用于蜂窝材料、金属泡沫铝的密度剖面。受控型材的形状与产品的某些机械特性有关,因此其形状的重大变化将被为此目的设计的监测方法检测为失控;如果发生这种情况,可以得出结论,泡沫的力学性能与要求的不同。该方法考虑了百分位曲线的计算,这将是定义控制图边界的基础,用高斯核估计SVR模型的参数,并在交叉验证的帮助下;在本研究中,我们评估了基于助推技术建立的控制图的性能。提出的方法解释简单,实用。在本研究中,我们分析了密度剖面形状的变化,并对其进行了分析,结果表明,密度剖面形状的变化超出了剖面的自然变异性,I型误差为0.341% (ARLreal= 293)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uso de regresión de soporte vectorial para el control de espuma metálica
El monitoreo de perfiles se enfoca en aquellas variables de proceso o producto que son caracterizadas por una relación funcional de esta variable respecto del tiempo o el espacio. El objetivo de este trabajo es desarrollar una metodología basada en Regresión de Soporte Vectorial, SVR, para el monitoreo de perfiles no lineales, e implementarla a los perfiles de densidad de un material celular, espuma metálica de aluminio. La forma de un perfil en control está asociada a ciertas características mecánicas del producto, por lo que un cambio significativo de su forma seria detectado como un fuera de control por un método de monitoreo diseñado para este fin; si esto sucediera, se puede concluir que las propiedades mecánicas de la espuma son diferentes a las requeridas. La metodología considera el cálculo de curvas percentiles que serán la base para definir los límites de un gráfico de control, la estimación de parámetros del modelo de SVR con un Kernel Gausseano y con la ayuda de validación cruzada; se evalúa el desempeño del gráfico de control establecido apoyados en la técnica de boostrapping. El método propuesto es sencillo de interpretar y práctico. De acuerdo con los resultados, si la forma del perfil de densidad llegara a cambiar más allá de la indicada variabilidad natural del perfil, el método implementado lo detectaría como fuera de control con un error tipo I de 0.341% (ARLreal= 293).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tecnologia en Marcha
Tecnologia en Marcha MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
93
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信