无表面活性剂水热法制备CsPbX3粉末(X = Cl, Br和I)的电子、结构、光学和电学性质

Q1 Engineering
C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta
{"title":"无表面活性剂水热法制备CsPbX3粉末(X = Cl, Br和I)的电子、结构、光学和电学性质","authors":"C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta","doi":"10.3390/nanomanufacturing3020013","DOIUrl":null,"url":null,"abstract":"Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.","PeriodicalId":52345,"journal":{"name":"Nanomanufacturing and Metrology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic, Structural, Optical, and Electrical Properties of CsPbX3 Powders (X = Cl, Br, and I) Prepared Using a Surfactant-Free Hydrothermal Approach\",\"authors\":\"C. Echeverría‐Arrondo, Agustin O. Alvarez, S. Masi, F. Fabregat‐Santiago, F. A. Porta\",\"doi\":\"10.3390/nanomanufacturing3020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.\",\"PeriodicalId\":52345,\"journal\":{\"name\":\"Nanomanufacturing and Metrology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomanufacturing and Metrology\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/nanomanufacturing3020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomanufacturing and Metrology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/nanomanufacturing3020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

近年来,钙钛矿型结构的铯卤化铅CsPbX3 (X = Cl, Br, and/or I)晶体的生长已采用多种策略,为进一步发展创新的光电和光伏应用铺平了道路。原则上,先进材料的光电性能受形貌、粒度、结构和成分以及这些参数中的缺陷的影响。在此,我们报告了一项详细的研究,使用理论和实验方法来评估CsPbX3微晶体的结构,电子,光学和电学性质。在无表面活性剂的情况下,采用水热法制备了微晶。这种合成方法也为从低成本前体合成钙钛矿相关材料提供了一个简单的升级。最后,在这个方向上,我们相信基于理论和实践之间协同作用的更深入的机制研究可以指导发现和开发具有高度定制性能的新型先进材料,用于光电子器件以及其他新兴技术的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic, Structural, Optical, and Electrical Properties of CsPbX3 Powders (X = Cl, Br, and I) Prepared Using a Surfactant-Free Hydrothermal Approach
Recently, several strategies have been adopted for the cesium lead halide, CsPbX3 (X = Cl, Br, and/or I), crystal growth with a perovskite-type structure, paving the way for the further development of innovative optoelectronic and photovoltaic applications. The optoelectronic properties of advanced materials are controlled, in principle, by effects of morphology, particle size, structure, and composition, as well as imperfections in these parameters. Herein, we report a detailed investigation, using theoretical and experimental approaches to evaluate the structural, electronic, optical, and electrical properties of CsPbX3 microcrystals. The microcrystals are synthesized successfully using the hydrothermal method without surfactants. This synthetic approach also offers an easy upscaling for perovskite-related material synthesis from low-cost precursors. Lastly, in this direction, we believe that deeper mechanistic studies, based on the synergy between theory and practice, can guide the discovery and development of new advanced materials with highly tailored properties for applications in optoelectronic devices, as well as other emergent technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomanufacturing and Metrology
Nanomanufacturing and Metrology Materials Science-Materials Science (miscellaneous)
CiteScore
5.40
自引率
0.00%
发文量
36
期刊介绍: Nanomanufacturing and Metrology is a peer-reviewed, international and interdisciplinary research journal and is the first journal over the world that provides a principal forum for nano-manufacturing and nano-metrology.Nanomanufacturing and Metrology publishes in the forms including original articles, cutting-edge communications, timely review papers, technical reports, and case studies. Special issues devoted to developments in important topics in nano-manufacturing and metrology will be published periodically.Nanomanufacturing and Metrology publishes articles that focus on, but are not limited to, the following areas:• Nano-manufacturing and metrology• Atomic manufacturing and metrology• Micro-manufacturing and metrology• Physics, chemistry, and materials in micro-manufacturing, nano-manufacturing, and atomic manufacturing• Tools and processes for micro-manufacturing, nano-manufacturing and atomic manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信