{"title":"基于蜂窝纸复合材料/芯-玻璃纤维复合材料/表面材料的轻质建筑板材","authors":"T. H. Nguyen, Hoc Thang Nguyen","doi":"10.4028/www.scientific.net/NHC.32.15","DOIUrl":null,"url":null,"abstract":"Lightweight panels for indoor constructions are typically made from composite materials with honeycomb and corrugated structures. The reinforcements are used in this study, one is fiberglass and the other is cellulose fiber, which cellulose from recycled paper. Experimental results indicate that the weight of honeycomb paper panel is light, only 13.6% of fiberglass composite and 32.6% of plywood. The presence of honeycomb structure has a significant effect on mechanical behaviors of composite panels. Both flexural and compressive strengths increase by replacing corrugated structure into honeycomb structure. During compression, the compressive strength and modulus of two-layer honeycomb/core panel are higher than those of monolayer honeycomb/core. Particularly, the honeycomb cell-wall thickness has a little effect on the weight, but has an important effect on mechanical properties. These results can be created low cost and lightweight environment-friendly panels by using recycled paper honeycomb structure.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"50 1","pages":"15 - 23"},"PeriodicalIF":0.4000,"publicationDate":"2021-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Lightweight Panel for Building Construction Based on Honeycomb Paper Composite/Core-Fiberglass Composite/Face Materials\",\"authors\":\"T. H. Nguyen, Hoc Thang Nguyen\",\"doi\":\"10.4028/www.scientific.net/NHC.32.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lightweight panels for indoor constructions are typically made from composite materials with honeycomb and corrugated structures. The reinforcements are used in this study, one is fiberglass and the other is cellulose fiber, which cellulose from recycled paper. Experimental results indicate that the weight of honeycomb paper panel is light, only 13.6% of fiberglass composite and 32.6% of plywood. The presence of honeycomb structure has a significant effect on mechanical behaviors of composite panels. Both flexural and compressive strengths increase by replacing corrugated structure into honeycomb structure. During compression, the compressive strength and modulus of two-layer honeycomb/core panel are higher than those of monolayer honeycomb/core. Particularly, the honeycomb cell-wall thickness has a little effect on the weight, but has an important effect on mechanical properties. These results can be created low cost and lightweight environment-friendly panels by using recycled paper honeycomb structure.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"50 1\",\"pages\":\"15 - 23\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/NHC.32.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.32.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Lightweight Panel for Building Construction Based on Honeycomb Paper Composite/Core-Fiberglass Composite/Face Materials
Lightweight panels for indoor constructions are typically made from composite materials with honeycomb and corrugated structures. The reinforcements are used in this study, one is fiberglass and the other is cellulose fiber, which cellulose from recycled paper. Experimental results indicate that the weight of honeycomb paper panel is light, only 13.6% of fiberglass composite and 32.6% of plywood. The presence of honeycomb structure has a significant effect on mechanical behaviors of composite panels. Both flexural and compressive strengths increase by replacing corrugated structure into honeycomb structure. During compression, the compressive strength and modulus of two-layer honeycomb/core panel are higher than those of monolayer honeycomb/core. Particularly, the honeycomb cell-wall thickness has a little effect on the weight, but has an important effect on mechanical properties. These results can be created low cost and lightweight environment-friendly panels by using recycled paper honeycomb structure.