{"title":"连续流动条件下DMSO/AcOH/H2O合成Fischer吲哚","authors":"Mei Wang, Shenghu Yan, Yue Zhang, Shunlin Gu","doi":"10.1177/17475198221150384","DOIUrl":null,"url":null,"abstract":"A new continuous flow synthetic method for preparing indole and its derivatives are successfully developed to overcome the disadvantages of traditional batch methods, such as low conversion rates, long reaction times, and amplification effects. The method represents a sustainable and efficient preparation of indole and its derivatives without the need for additional catalysts. By investigating the effects of the reaction temperature, the solvent, the equivalence ratio, and the residence time, high conversion rates and excellent yields were simultaneously achieved within 20 min under optimized conditions. For the template reaction, DMSO/H2O/AcOH = 2:1:1 is used as the solvent, the reaction temperature is 110 °C, and the ratio of phenylhydrazine hydrochloride to cyclopentanone is 1:1.05. Indole and a wide array of its derivatives are synthesized to verify the universality of the method, and most of the reactions exhibit satisfactory conversion rates and high yields are obtained. This new continuous flow method is more suitable for industrial scale-up relative to traditional batch methods.","PeriodicalId":15318,"journal":{"name":"Journal of Chemical Research-s","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fischer indole synthesis in DMSO/AcOH/H2O under continuous flow conditions\",\"authors\":\"Mei Wang, Shenghu Yan, Yue Zhang, Shunlin Gu\",\"doi\":\"10.1177/17475198221150384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new continuous flow synthetic method for preparing indole and its derivatives are successfully developed to overcome the disadvantages of traditional batch methods, such as low conversion rates, long reaction times, and amplification effects. The method represents a sustainable and efficient preparation of indole and its derivatives without the need for additional catalysts. By investigating the effects of the reaction temperature, the solvent, the equivalence ratio, and the residence time, high conversion rates and excellent yields were simultaneously achieved within 20 min under optimized conditions. For the template reaction, DMSO/H2O/AcOH = 2:1:1 is used as the solvent, the reaction temperature is 110 °C, and the ratio of phenylhydrazine hydrochloride to cyclopentanone is 1:1.05. Indole and a wide array of its derivatives are synthesized to verify the universality of the method, and most of the reactions exhibit satisfactory conversion rates and high yields are obtained. This new continuous flow method is more suitable for industrial scale-up relative to traditional batch methods.\",\"PeriodicalId\":15318,\"journal\":{\"name\":\"Journal of Chemical Research-s\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Research-s\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/17475198221150384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Research-s","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17475198221150384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fischer indole synthesis in DMSO/AcOH/H2O under continuous flow conditions
A new continuous flow synthetic method for preparing indole and its derivatives are successfully developed to overcome the disadvantages of traditional batch methods, such as low conversion rates, long reaction times, and amplification effects. The method represents a sustainable and efficient preparation of indole and its derivatives without the need for additional catalysts. By investigating the effects of the reaction temperature, the solvent, the equivalence ratio, and the residence time, high conversion rates and excellent yields were simultaneously achieved within 20 min under optimized conditions. For the template reaction, DMSO/H2O/AcOH = 2:1:1 is used as the solvent, the reaction temperature is 110 °C, and the ratio of phenylhydrazine hydrochloride to cyclopentanone is 1:1.05. Indole and a wide array of its derivatives are synthesized to verify the universality of the method, and most of the reactions exhibit satisfactory conversion rates and high yields are obtained. This new continuous flow method is more suitable for industrial scale-up relative to traditional batch methods.
期刊介绍:
The Journal of Chemical Research is a peer reviewed journal that publishes full-length review and research papers in all branches of experimental chemistry. The journal fills a niche by also publishing short papers, a format which favours particular types of work, e.g. the scope of new reagents or methodology, and the elucidation of the structure of novel compounds. Though welcome, short papers should not result in fragmentation of publication, they should describe a completed piece of work. The Journal is not intended as a vehicle for preliminary publications. The work must meet all the normal criteria for acceptance as regards scientific standards. Papers that contain extensive biological results or material relating to other areas of science may be diverted to more appropriate specialist journals. Areas of coverage include: Organic Chemistry; Inorganic Chemistry; Materials Chemistry; Crystallography; Computational Chemistry.