图的笛卡尔积的完美匹配枚举

IF 0.7 4区 数学 Q2 MATHEMATICS
Wei Li, Yao Wang
{"title":"图的笛卡尔积的完美匹配枚举","authors":"Wei Li, Yao Wang","doi":"10.37236/11141","DOIUrl":null,"url":null,"abstract":"A subgraph $ H $ of a graph $G$ is nice if $ G-V(H) $ has a perfect matching. An even cycle $ C $ in an oriented graph is oddly oriented if for either choice of direction of traversal around $ C $, the number of edges of $C$ directed along the traversal is odd. An orientation $ D $ of a graph $ G $ with an even number of vertices is Pfaffian if every nice cycle of $ G $ is oddly oriented in $ D $. Let $ P_{n} $ denote a path on $ n $ vertices. The Pfaffian graph $G \\times P_{2n} $ was determined by Lu and Zhang [The Pfaffian property of Cartesian products of graphs, J. Comb. Optim. 27 (2014) 530--540]. In this paper, we characterize the Pfaffian graph $ G \\times P_{2n+1} $ with respect to the forbidden subgraphs of $G$. We first give sufficient and necessary conditions under which $G\\times P_{2n+1}$ ($n\\geqslant 2$) is Pfaffian. Then we characterize the Pfaffian graph $ G \\times P_{3} $ when $G$ is a bipartite graph, and we generalize this result to the the case $G$ contains exactly one odd cycle. Following these results, we enumerate the number of perfect matchings of the Pfaffian graph $G \\times P_{n}$ in terms of the eigenvalues of the orientation graph of $G$, and we also count perfect matchings of some Pfaffian graph $G \\times P_{n}$ by the eigenvalues of $G$.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of Perfect Matchings of the Cartesian Products of Graphs\",\"authors\":\"Wei Li, Yao Wang\",\"doi\":\"10.37236/11141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subgraph $ H $ of a graph $G$ is nice if $ G-V(H) $ has a perfect matching. An even cycle $ C $ in an oriented graph is oddly oriented if for either choice of direction of traversal around $ C $, the number of edges of $C$ directed along the traversal is odd. An orientation $ D $ of a graph $ G $ with an even number of vertices is Pfaffian if every nice cycle of $ G $ is oddly oriented in $ D $. Let $ P_{n} $ denote a path on $ n $ vertices. The Pfaffian graph $G \\\\times P_{2n} $ was determined by Lu and Zhang [The Pfaffian property of Cartesian products of graphs, J. Comb. Optim. 27 (2014) 530--540]. In this paper, we characterize the Pfaffian graph $ G \\\\times P_{2n+1} $ with respect to the forbidden subgraphs of $G$. We first give sufficient and necessary conditions under which $G\\\\times P_{2n+1}$ ($n\\\\geqslant 2$) is Pfaffian. Then we characterize the Pfaffian graph $ G \\\\times P_{3} $ when $G$ is a bipartite graph, and we generalize this result to the the case $G$ contains exactly one odd cycle. Following these results, we enumerate the number of perfect matchings of the Pfaffian graph $G \\\\times P_{n}$ in terms of the eigenvalues of the orientation graph of $G$, and we also count perfect matchings of some Pfaffian graph $G \\\\times P_{n}$ by the eigenvalues of $G$.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11141\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11141","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

如果$ G-V(H) $有完美匹配,那么图形$G$的子图$ H $就很好。有向图中的偶循环$ C $是奇异有向的,如果对于$ C $周围的任意一个遍历方向的选择,$C$沿遍历方向的边数是奇数。具有偶数个顶点的图形$ G $的方向$ D $是Pfaffian,如果$ G $的每个好循环在$ D $中都有奇怪的方向。设$ P_{n} $表示$ n $顶点上的路径。Pfaffian图$G \times P_{2n} $是由Lu和Zhang确定的[图的笛卡尔积的Pfaffian性质,J. Comb.]。优化,27(2014)530—540]。在本文中,我们描述了关于$G$的禁止子图的Pfaffian图$ G \times P_{2n+1} $。我们首先给出$G\times P_{2n+1}$ ($n\geqslant 2$)是可行的充要条件。然后我们刻画了$G$为二部图时的Pfaffian图$ G \times P_{3} $,并将这一结果推广到$G$只包含一个奇循环的情况。根据这些结果,我们根据$G$的方向图的特征值枚举了Pfaffian图$G \times P_{n}$的完美匹配次数,并通过$G$的特征值计算了某些Pfaffian图$G \times P_{n}$的完美匹配次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration of Perfect Matchings of the Cartesian Products of Graphs
A subgraph $ H $ of a graph $G$ is nice if $ G-V(H) $ has a perfect matching. An even cycle $ C $ in an oriented graph is oddly oriented if for either choice of direction of traversal around $ C $, the number of edges of $C$ directed along the traversal is odd. An orientation $ D $ of a graph $ G $ with an even number of vertices is Pfaffian if every nice cycle of $ G $ is oddly oriented in $ D $. Let $ P_{n} $ denote a path on $ n $ vertices. The Pfaffian graph $G \times P_{2n} $ was determined by Lu and Zhang [The Pfaffian property of Cartesian products of graphs, J. Comb. Optim. 27 (2014) 530--540]. In this paper, we characterize the Pfaffian graph $ G \times P_{2n+1} $ with respect to the forbidden subgraphs of $G$. We first give sufficient and necessary conditions under which $G\times P_{2n+1}$ ($n\geqslant 2$) is Pfaffian. Then we characterize the Pfaffian graph $ G \times P_{3} $ when $G$ is a bipartite graph, and we generalize this result to the the case $G$ contains exactly one odd cycle. Following these results, we enumerate the number of perfect matchings of the Pfaffian graph $G \times P_{n}$ in terms of the eigenvalues of the orientation graph of $G$, and we also count perfect matchings of some Pfaffian graph $G \times P_{n}$ by the eigenvalues of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信