U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq
{"title":"基于PGW的ZnO纳米流体壳管式换热器的传热与火用分析","authors":"U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq","doi":"10.15282/ijame.19.2.2022.12.0754","DOIUrl":null,"url":null,"abstract":"In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Heat Transfer and Exergy Analysis of a Shell and Tube Heat Exchanger using PGW based ZnO Nanofluids\",\"authors\":\"U.D. Das, M. A. Hossain, J.U. Ahamed, M.E.A. Razzaq\",\"doi\":\"10.15282/ijame.19.2.2022.12.0754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.2.2022.12.0754\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.12.0754","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat Transfer and Exergy Analysis of a Shell and Tube Heat Exchanger using PGW based ZnO Nanofluids
In this experimental work, ZnO nanoparticles were synthesized using the chemical precipitation method, and the nanoparticle structure and morphology were characterized through XRD and SEM. Heat transfer and exergetic characteristics were then studied in a shell and tube heat exchanger using PGW-based ZnO nanofluids varying nanoparticle volume concentration and nanofluid (shell side) flow rate at 6, 8, 10 and 12 litres/min. The hot water flow rate was fixed at 12 litres/min. The experimental results show that the heat transfer rate was improved by increasing the nanoparticle concentration and nanofluid flow rate. When the nanoparticle volume concentration was 0.3 per cent, the maximum enhancement of heat transfer rate and average heat transfer coefficient using ZnO nanofluids were 35.9 per cent and 40.2 per cent, respectively, in comparison to the base fluid. Exergy loss and dimensionless exergy loss both increased with nanofluid flow rate and dropped substantially with increased nanoparticle volume concentrations. The average increment of exergetic effectiveness at three different nanoparticle volume concentration (0.1%, 0.2%, and 0.3%) are 10.68%, 23.64%, and 31.23% respectively. The highest exergetic sustainability index (0.41) and lowest environmental impact factor (2.42) were observed when the nanoparticle concentration was 0.3% with the nanofluid flow rate of 6 litres/min.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.