利用循环流化床煤燃烧经验设计乌克兰制煤湿废和RDF中容量蒸汽锅炉

A. Topal, I. Holenko, M. Yurchenko
{"title":"利用循环流化床煤燃烧经验设计乌克兰制煤湿废和RDF中容量蒸汽锅炉","authors":"A. Topal, I. Holenko, M. Yurchenko","doi":"10.33070/etars.4.2020.02","DOIUrl":null,"url":null,"abstract":"The necessity to implement advanced combustion technologies to utilize MSW/SRF/RDF and coal reject waste is an important problem for Ukraine to be solved. The introduction of such technologies will favor to involve annually about 2 mln t of RDF and partly cover deficit of bituminous coal, lack of which is currently faced. The technological niche for CFB combustion of RDF/SRF has certain optimal range bearing in mind technological, ecological (2010/75/EU Directive etc.) and financial performance. In view of this it seems reasonable to implement CFB for RDF/SRF firing starting from boiler steam capacity of 50-75 t/h while stoker firing of RDF could be efficiently implemented for lower range. The design of such boiler should rely upon lessons learned of commissioning and operating large-scale CFB boiler (having steam capacity of 670 t/h; 545/545 C) we obtained at Starobeshevo Power Plant in Ukraine. Accounting for the above the analysis of implementation and modifications made at large-scale CFB boiler (cyclones, seal pot, fluidized bed heat exchangers) has been done. The experience was used to design (along with KB “Energomashproekt”) medium-scale CFB boiler (having steam capacity of 75 t/h; 500 C) to burn high ash coal washering wastes and RDF/SRF. The sketch-3D-design of such boiler is presented with key performance. Bibl. 6, Fig. 4, Tab. 4.","PeriodicalId":11558,"journal":{"name":"Energy Technologies & Resource Saving","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE USE OF EXPERIENCE OF COAL COMBUSTION IN A CIRCULATING FLUIDIZED BED FOR DESIGNING OF MEDIUM CAPACITY STEAM BOILERS FOR BURNING OF WET WASTE OF COAL PREPARATION AND RDF IN UKRAINE\",\"authors\":\"A. Topal, I. Holenko, M. Yurchenko\",\"doi\":\"10.33070/etars.4.2020.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necessity to implement advanced combustion technologies to utilize MSW/SRF/RDF and coal reject waste is an important problem for Ukraine to be solved. The introduction of such technologies will favor to involve annually about 2 mln t of RDF and partly cover deficit of bituminous coal, lack of which is currently faced. The technological niche for CFB combustion of RDF/SRF has certain optimal range bearing in mind technological, ecological (2010/75/EU Directive etc.) and financial performance. In view of this it seems reasonable to implement CFB for RDF/SRF firing starting from boiler steam capacity of 50-75 t/h while stoker firing of RDF could be efficiently implemented for lower range. The design of such boiler should rely upon lessons learned of commissioning and operating large-scale CFB boiler (having steam capacity of 670 t/h; 545/545 C) we obtained at Starobeshevo Power Plant in Ukraine. Accounting for the above the analysis of implementation and modifications made at large-scale CFB boiler (cyclones, seal pot, fluidized bed heat exchangers) has been done. The experience was used to design (along with KB “Energomashproekt”) medium-scale CFB boiler (having steam capacity of 75 t/h; 500 C) to burn high ash coal washering wastes and RDF/SRF. The sketch-3D-design of such boiler is presented with key performance. Bibl. 6, Fig. 4, Tab. 4.\",\"PeriodicalId\":11558,\"journal\":{\"name\":\"Energy Technologies & Resource Saving\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Technologies & Resource Saving\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33070/etars.4.2020.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Technologies & Resource Saving","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33070/etars.4.2020.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

必须采用先进的燃烧技术来利用城市生活垃圾/固体废物/RDF和煤炭废弃物,这是乌克兰需要解决的重要问题。采用这种技术将有利于每年提供大约200万吨自然资源基金,并部分弥补目前面临的烟煤短缺问题。考虑到技术、生态(2010/75/EU指令等)和财务绩效,RDF/SRF循环流化床燃烧的技术利基具有一定的最佳范围。因此,在锅炉蒸汽容量为50 ~ 75 t/h时,对RDF/SRF进行循环流化床燃烧是合理的,而在较低的范围内,对RDF进行加炉燃烧是有效的。这类锅炉的设计应借鉴大型循环流化床锅炉(蒸汽容量670 t/h;545/545℃),我们在乌克兰Starobeshevo电厂获得。在此基础上,对大型循环流化床锅炉(旋风炉、密封锅、流化床换热器)的实施和改造进行了分析。该经验被用于设计(与KB“Energomashproekt”一起)中型循环流化床锅炉(蒸汽容量为75 t/h;500℃)燃烧高灰分洗煤废料和RDF/SRF。介绍了该锅炉的三维草图设计及关键性能。圣经6,图4,表4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE USE OF EXPERIENCE OF COAL COMBUSTION IN A CIRCULATING FLUIDIZED BED FOR DESIGNING OF MEDIUM CAPACITY STEAM BOILERS FOR BURNING OF WET WASTE OF COAL PREPARATION AND RDF IN UKRAINE
The necessity to implement advanced combustion technologies to utilize MSW/SRF/RDF and coal reject waste is an important problem for Ukraine to be solved. The introduction of such technologies will favor to involve annually about 2 mln t of RDF and partly cover deficit of bituminous coal, lack of which is currently faced. The technological niche for CFB combustion of RDF/SRF has certain optimal range bearing in mind technological, ecological (2010/75/EU Directive etc.) and financial performance. In view of this it seems reasonable to implement CFB for RDF/SRF firing starting from boiler steam capacity of 50-75 t/h while stoker firing of RDF could be efficiently implemented for lower range. The design of such boiler should rely upon lessons learned of commissioning and operating large-scale CFB boiler (having steam capacity of 670 t/h; 545/545 C) we obtained at Starobeshevo Power Plant in Ukraine. Accounting for the above the analysis of implementation and modifications made at large-scale CFB boiler (cyclones, seal pot, fluidized bed heat exchangers) has been done. The experience was used to design (along with KB “Energomashproekt”) medium-scale CFB boiler (having steam capacity of 75 t/h; 500 C) to burn high ash coal washering wastes and RDF/SRF. The sketch-3D-design of such boiler is presented with key performance. Bibl. 6, Fig. 4, Tab. 4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信