Wentai Zhang, Joe Joseph, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, T. Furuhata, Kenji Shimada, L. Kara
{"title":"一种数据驱动的工程图纸构件分割的数据增强方法","authors":"Wentai Zhang, Joe Joseph, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, T. Furuhata, Kenji Shimada, L. Kara","doi":"10.1115/1.4062233","DOIUrl":null,"url":null,"abstract":"\n We present a new data generation method to facilitate an automatic machine interpretation of 2D engineering part drawings. While such drawings are a common medium for clients to encode design and manufacturing requirements, a lack of computer support to automatically interpret these drawings necessitates part manufacturers to resort to laborious manual approaches for interpretation which, in turn, severely limits processing capacity. Although recent advances in trainable computer vision methods may enable automatic machine interpretation, it remains challenging to apply such methods to engineering drawings due to a lack of labeled training data. As one step toward this challenge, we propose a constrained data synthesis method to generate an arbitrarily large set of synthetic training drawings using only a handful of labeled examples. Our method is based on the randomization of the dimension sets subject to two major constraints to ensure the validity of the synthetic drawings. The effectiveness of our method is demonstrated in the context of a binary component segmentation task with a proposed list of descriptors. An evaluation of several image segmentation methods trained on our synthetic dataset shows that our approach to new data generation can boost the segmentation accuracy and the generalizability of the machine learning models to unseen drawings.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"119 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Data Augmentation Method for Data-Driven Component Segmentation of Engineering Drawings\",\"authors\":\"Wentai Zhang, Joe Joseph, Quan Chen, Can Koz, Liuyue Xie, Amit Regmi, Soji Yamakawa, T. Furuhata, Kenji Shimada, L. Kara\",\"doi\":\"10.1115/1.4062233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a new data generation method to facilitate an automatic machine interpretation of 2D engineering part drawings. While such drawings are a common medium for clients to encode design and manufacturing requirements, a lack of computer support to automatically interpret these drawings necessitates part manufacturers to resort to laborious manual approaches for interpretation which, in turn, severely limits processing capacity. Although recent advances in trainable computer vision methods may enable automatic machine interpretation, it remains challenging to apply such methods to engineering drawings due to a lack of labeled training data. As one step toward this challenge, we propose a constrained data synthesis method to generate an arbitrarily large set of synthetic training drawings using only a handful of labeled examples. Our method is based on the randomization of the dimension sets subject to two major constraints to ensure the validity of the synthetic drawings. The effectiveness of our method is demonstrated in the context of a binary component segmentation task with a proposed list of descriptors. An evaluation of several image segmentation methods trained on our synthetic dataset shows that our approach to new data generation can boost the segmentation accuracy and the generalizability of the machine learning models to unseen drawings.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062233\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062233","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A Data Augmentation Method for Data-Driven Component Segmentation of Engineering Drawings
We present a new data generation method to facilitate an automatic machine interpretation of 2D engineering part drawings. While such drawings are a common medium for clients to encode design and manufacturing requirements, a lack of computer support to automatically interpret these drawings necessitates part manufacturers to resort to laborious manual approaches for interpretation which, in turn, severely limits processing capacity. Although recent advances in trainable computer vision methods may enable automatic machine interpretation, it remains challenging to apply such methods to engineering drawings due to a lack of labeled training data. As one step toward this challenge, we propose a constrained data synthesis method to generate an arbitrarily large set of synthetic training drawings using only a handful of labeled examples. Our method is based on the randomization of the dimension sets subject to two major constraints to ensure the validity of the synthetic drawings. The effectiveness of our method is demonstrated in the context of a binary component segmentation task with a proposed list of descriptors. An evaluation of several image segmentation methods trained on our synthetic dataset shows that our approach to new data generation can boost the segmentation accuracy and the generalizability of the machine learning models to unseen drawings.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping