基于期望最大化和KL散度的欺诈审稿人检测失衡处理

Wen Zhang, Guan-Shi Qin, Qiang Wang
{"title":"基于期望最大化和KL散度的欺诈审稿人检测失衡处理","authors":"Wen Zhang, Guan-Shi Qin, Qiang Wang","doi":"10.1145/3498851.3498989","DOIUrl":null,"url":null,"abstract":"Online review fraud and review manipulation hurt the profits of stakeholders and undermine the value of online reviews. For this reason, it is critical to detect online review fraud and fraudulent reviewers effectively for the development of e-commerce. Extent studies propose various fraud detection techniques to detect fraudulent reviewers. However, most of these studies do not handle the data imbalance problem in fraudulent reviewer detection. To fill this research gap, this paper proposes a novel approach to detect fraudulent reviewers in handling the data imbalance based on Expectation Maximization (EM) and Kullback–Leibler (KL) divergence (called EMKL). We first use the expectation maximization algorithm to model the latent topic distributions of reviewers on the review features. Then, we adopt the Kullback–Leibler divergence to measure the similarities of reviewers based on their topic distributions to detect fraudulent reviewers. The experiment on Yelp dataset shows that the EMKL approach has a good performance in detecting fraudulent reviewers. In addition, the proposed EMKL method performs better than the performance of state-of-the-art techniques.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Handling Imbalance in Fraudulent Reviewer Detection based on Expectation Maximization and KL Divergence\",\"authors\":\"Wen Zhang, Guan-Shi Qin, Qiang Wang\",\"doi\":\"10.1145/3498851.3498989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online review fraud and review manipulation hurt the profits of stakeholders and undermine the value of online reviews. For this reason, it is critical to detect online review fraud and fraudulent reviewers effectively for the development of e-commerce. Extent studies propose various fraud detection techniques to detect fraudulent reviewers. However, most of these studies do not handle the data imbalance problem in fraudulent reviewer detection. To fill this research gap, this paper proposes a novel approach to detect fraudulent reviewers in handling the data imbalance based on Expectation Maximization (EM) and Kullback–Leibler (KL) divergence (called EMKL). We first use the expectation maximization algorithm to model the latent topic distributions of reviewers on the review features. Then, we adopt the Kullback–Leibler divergence to measure the similarities of reviewers based on their topic distributions to detect fraudulent reviewers. The experiment on Yelp dataset shows that the EMKL approach has a good performance in detecting fraudulent reviewers. In addition, the proposed EMKL method performs better than the performance of state-of-the-art techniques.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3498851.3498989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498851.3498989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络评论欺诈和操纵损害了利益相关者的利益,破坏了网络评论的价值。因此,有效地检测网络评论欺诈和虚假评论者对于电子商务的发展至关重要。程度研究提出了各种欺诈检测技术来检测欺诈审稿人。然而,这些研究大多没有处理欺诈审稿人检测中的数据不平衡问题。为了填补这一研究空白,本文提出了一种基于期望最大化(EM)和Kullback-Leibler (KL)散度(EMKL)的数据不平衡检测方法。我们首先使用期望最大化算法对评论者在评论特征上的潜在主题分布进行建模。然后,我们根据审稿人的主题分布,采用Kullback-Leibler散度度量审稿人的相似度,以检测审稿人的欺诈行为。在Yelp数据集上的实验表明,EMKL方法在检测虚假评论者方面具有良好的性能。此外,所提出的EMKL方法的性能优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handling Imbalance in Fraudulent Reviewer Detection based on Expectation Maximization and KL Divergence
Online review fraud and review manipulation hurt the profits of stakeholders and undermine the value of online reviews. For this reason, it is critical to detect online review fraud and fraudulent reviewers effectively for the development of e-commerce. Extent studies propose various fraud detection techniques to detect fraudulent reviewers. However, most of these studies do not handle the data imbalance problem in fraudulent reviewer detection. To fill this research gap, this paper proposes a novel approach to detect fraudulent reviewers in handling the data imbalance based on Expectation Maximization (EM) and Kullback–Leibler (KL) divergence (called EMKL). We first use the expectation maximization algorithm to model the latent topic distributions of reviewers on the review features. Then, we adopt the Kullback–Leibler divergence to measure the similarities of reviewers based on their topic distributions to detect fraudulent reviewers. The experiment on Yelp dataset shows that the EMKL approach has a good performance in detecting fraudulent reviewers. In addition, the proposed EMKL method performs better than the performance of state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信