S. Lee, C. Chokradjaroen, Yasuyuki Sawada, N. Saito
{"title":"由部分氧化和金属间相形成诱发的轻质、高硬度多组分体系的制备","authors":"S. Lee, C. Chokradjaroen, Yasuyuki Sawada, N. Saito","doi":"10.1557/s43578-023-01137-z","DOIUrl":null,"url":null,"abstract":"The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems were prepared by mechanical alloying in oxygen-lean atmosphere followed by spark plasma sintering. The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems which were sintered at 750 °C after 16 h milling showed the highest hardness of 509 and 947 HV with low densities of 2.9 and 3.9 g/cm3, respectively. The decrease in particle size and uniform dispersion of elements through optimization of the MA process induced the formation of uniform composite microstructure after SPS. Moreover, the addition of the fourth element, Cu, showed a significant impact on the improvement in hardness. This result was explained from the perspective of the microstructure and the electronic nature of elements. Our results provide a facile method for synthesizing oxide/metal composites from elemental powders without a separate oxidation process.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"12 1","pages":"4235 - 4246"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of lightweight, high hardness multi-component systems induced by partial oxidation and hard intermetallic phase formation\",\"authors\":\"S. Lee, C. Chokradjaroen, Yasuyuki Sawada, N. Saito\",\"doi\":\"10.1557/s43578-023-01137-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems were prepared by mechanical alloying in oxygen-lean atmosphere followed by spark plasma sintering. The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems which were sintered at 750 °C after 16 h milling showed the highest hardness of 509 and 947 HV with low densities of 2.9 and 3.9 g/cm3, respectively. The decrease in particle size and uniform dispersion of elements through optimization of the MA process induced the formation of uniform composite microstructure after SPS. Moreover, the addition of the fourth element, Cu, showed a significant impact on the improvement in hardness. This result was explained from the perspective of the microstructure and the electronic nature of elements. Our results provide a facile method for synthesizing oxide/metal composites from elemental powders without a separate oxidation process.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"12 1\",\"pages\":\"4235 - 4246\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01137-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01137-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Preparation of lightweight, high hardness multi-component systems induced by partial oxidation and hard intermetallic phase formation
The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems were prepared by mechanical alloying in oxygen-lean atmosphere followed by spark plasma sintering. The ternary Mg–Al–Ti and quaternary Mg–Al–Ti–Cu systems which were sintered at 750 °C after 16 h milling showed the highest hardness of 509 and 947 HV with low densities of 2.9 and 3.9 g/cm3, respectively. The decrease in particle size and uniform dispersion of elements through optimization of the MA process induced the formation of uniform composite microstructure after SPS. Moreover, the addition of the fourth element, Cu, showed a significant impact on the improvement in hardness. This result was explained from the perspective of the microstructure and the electronic nature of elements. Our results provide a facile method for synthesizing oxide/metal composites from elemental powders without a separate oxidation process.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.