A. Işık, U. A. Çevik, I. Celik, Tuğba Erçetin, A. Koçak, Y. Özkay, Z. Kaplancıklı
{"title":"新型丁酰胆碱酯酶抑制剂噻唑酰腙衍生物的合成、表征、分子对接、动力学模拟及硅吸收、分布、代谢和排泄(ADME)研究","authors":"A. Işık, U. A. Çevik, I. Celik, Tuğba Erçetin, A. Koçak, Y. Özkay, Z. Kaplancıklı","doi":"10.1515/znc-2021-0316","DOIUrl":null,"url":null,"abstract":"Abstract In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (3a–3f) and 4-methoxyphenylpiperazine (3g–3l) side chains were synthesized and their structures were characterized by spectral (1H NMR, 13C NMR, and MS spectra) analyses. In vitro inhibitory activities of synthesized compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined by Ellman method. According to the results, all compounds showed a weak inhibitory effect on AChE, while promising results were obtained on BChE. Among the synthesized compounds, the activities of the derivatives carrying 4-ethylpiperazine (3a–3f) structure were found to be more effective than the compounds carrying 4-methoxyphenyl piperazine (3g–3l) derivatives. Especially, compound 3f bearing the nitro substituent was found to be the most promising compound on BChE in the series. The absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were predicted by using the SwissADME server. The potential binding mode and stability of compound 3f with BChE were investigated by the molecular docking and dynamics simulations. The results showed that 3f was strongly bound up with BChE with the optimal conformation; in addition, their binding free energy reached −167.936 ± 13.109 kJ/mol.","PeriodicalId":23894,"journal":{"name":"Zeitschrift für Naturforschung C","volume":"20 1","pages":"447 - 457"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Synthesis, characterization, molecular docking, dynamics simulations, and in silico absorption, distribution, metabolism, and excretion (ADME) studies of new thiazolylhydrazone derivatives as butyrylcholinesterase inhibitors\",\"authors\":\"A. Işık, U. A. Çevik, I. Celik, Tuğba Erçetin, A. Koçak, Y. Özkay, Z. Kaplancıklı\",\"doi\":\"10.1515/znc-2021-0316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (3a–3f) and 4-methoxyphenylpiperazine (3g–3l) side chains were synthesized and their structures were characterized by spectral (1H NMR, 13C NMR, and MS spectra) analyses. In vitro inhibitory activities of synthesized compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined by Ellman method. According to the results, all compounds showed a weak inhibitory effect on AChE, while promising results were obtained on BChE. Among the synthesized compounds, the activities of the derivatives carrying 4-ethylpiperazine (3a–3f) structure were found to be more effective than the compounds carrying 4-methoxyphenyl piperazine (3g–3l) derivatives. Especially, compound 3f bearing the nitro substituent was found to be the most promising compound on BChE in the series. The absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were predicted by using the SwissADME server. The potential binding mode and stability of compound 3f with BChE were investigated by the molecular docking and dynamics simulations. The results showed that 3f was strongly bound up with BChE with the optimal conformation; in addition, their binding free energy reached −167.936 ± 13.109 kJ/mol.\",\"PeriodicalId\":23894,\"journal\":{\"name\":\"Zeitschrift für Naturforschung C\",\"volume\":\"20 1\",\"pages\":\"447 - 457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung C\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/znc-2021-0316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znc-2021-0316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis, characterization, molecular docking, dynamics simulations, and in silico absorption, distribution, metabolism, and excretion (ADME) studies of new thiazolylhydrazone derivatives as butyrylcholinesterase inhibitors
Abstract In this study, two novel series of thiazolylhydrazone derivatives containing 4-ethylpiperazine (3a–3f) and 4-methoxyphenylpiperazine (3g–3l) side chains were synthesized and their structures were characterized by spectral (1H NMR, 13C NMR, and MS spectra) analyses. In vitro inhibitory activities of synthesized compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined by Ellman method. According to the results, all compounds showed a weak inhibitory effect on AChE, while promising results were obtained on BChE. Among the synthesized compounds, the activities of the derivatives carrying 4-ethylpiperazine (3a–3f) structure were found to be more effective than the compounds carrying 4-methoxyphenyl piperazine (3g–3l) derivatives. Especially, compound 3f bearing the nitro substituent was found to be the most promising compound on BChE in the series. The absorption, distribution, metabolism, and excretion (ADME) parameters of the synthesized compounds were predicted by using the SwissADME server. The potential binding mode and stability of compound 3f with BChE were investigated by the molecular docking and dynamics simulations. The results showed that 3f was strongly bound up with BChE with the optimal conformation; in addition, their binding free energy reached −167.936 ± 13.109 kJ/mol.