{"title":"构建无人机运动轨迹的计算机信息处理系统设计","authors":"V. Kvasnikov, D. Ornatskyi, M. Graf, O. Shelukha","doi":"10.15587/1729-4061.2021.225501","DOIUrl":null,"url":null,"abstract":"This paper addresses the issue of developing a computerized system for processing information in the construction of the trajectory of an unmanned aircraft vehicle (UAV), a remotely-piloted aviation system (RPAS), or another robotic system. Resolving this task involves the neural network learning algorithms based on the mathematical model of movement.<br><br>The construction of such a trajectory between two specified destinations has been considered that provides for the possibility of bypassing static and dynamic obstacles. The specified trajectory is divided into several smaller parts. The possibility of restructuring when changing the position of obstacles in space has been considered. A UAV flight control algorithm has been developed, which implies training a neural network for bypassing obstacles of different sizes.<br><br>To predict the development of the situation when an object moves between two specified points in space, it is proposed to use the Q-Learning algorithm. It has been shown that the smallest number of steps required for moving along a specified trajectory is 18, the largest is 273 steps. In case of distortion during data transmission, the training of the neural network makes it possible to reduce the possibility of collision with obstacles by improving the accuracy and speed of information transfer between the on-board computer and operator. A system of the video support to moving objects was modeled; dependence charts of the normalized frame size at different parameter values were built. Using the charts makes it possible to determine the function of the maneuver intensity. Existing neural network learning methods such as CNN and LSTM were compared. It has been proven that the success rate reaches 74 % when using CNN only, while it amounts to 92 % at the hybrid application of CNN+LSTM. The simulation results have demonstrated the high efficiency of the developed algorithm.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing a Computerized Information Processing System to Build a Movement Trajectory of An Unmanned Aircraft Vehicle\",\"authors\":\"V. Kvasnikov, D. Ornatskyi, M. Graf, O. Shelukha\",\"doi\":\"10.15587/1729-4061.2021.225501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the issue of developing a computerized system for processing information in the construction of the trajectory of an unmanned aircraft vehicle (UAV), a remotely-piloted aviation system (RPAS), or another robotic system. Resolving this task involves the neural network learning algorithms based on the mathematical model of movement.<br><br>The construction of such a trajectory between two specified destinations has been considered that provides for the possibility of bypassing static and dynamic obstacles. The specified trajectory is divided into several smaller parts. The possibility of restructuring when changing the position of obstacles in space has been considered. A UAV flight control algorithm has been developed, which implies training a neural network for bypassing obstacles of different sizes.<br><br>To predict the development of the situation when an object moves between two specified points in space, it is proposed to use the Q-Learning algorithm. It has been shown that the smallest number of steps required for moving along a specified trajectory is 18, the largest is 273 steps. In case of distortion during data transmission, the training of the neural network makes it possible to reduce the possibility of collision with obstacles by improving the accuracy and speed of information transfer between the on-board computer and operator. A system of the video support to moving objects was modeled; dependence charts of the normalized frame size at different parameter values were built. Using the charts makes it possible to determine the function of the maneuver intensity. Existing neural network learning methods such as CNN and LSTM were compared. It has been proven that the success rate reaches 74 % when using CNN only, while it amounts to 92 % at the hybrid application of CNN+LSTM. The simulation results have demonstrated the high efficiency of the developed algorithm.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2021.225501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2021.225501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a Computerized Information Processing System to Build a Movement Trajectory of An Unmanned Aircraft Vehicle
This paper addresses the issue of developing a computerized system for processing information in the construction of the trajectory of an unmanned aircraft vehicle (UAV), a remotely-piloted aviation system (RPAS), or another robotic system. Resolving this task involves the neural network learning algorithms based on the mathematical model of movement.
The construction of such a trajectory between two specified destinations has been considered that provides for the possibility of bypassing static and dynamic obstacles. The specified trajectory is divided into several smaller parts. The possibility of restructuring when changing the position of obstacles in space has been considered. A UAV flight control algorithm has been developed, which implies training a neural network for bypassing obstacles of different sizes.
To predict the development of the situation when an object moves between two specified points in space, it is proposed to use the Q-Learning algorithm. It has been shown that the smallest number of steps required for moving along a specified trajectory is 18, the largest is 273 steps. In case of distortion during data transmission, the training of the neural network makes it possible to reduce the possibility of collision with obstacles by improving the accuracy and speed of information transfer between the on-board computer and operator. A system of the video support to moving objects was modeled; dependence charts of the normalized frame size at different parameter values were built. Using the charts makes it possible to determine the function of the maneuver intensity. Existing neural network learning methods such as CNN and LSTM were compared. It has been proven that the success rate reaches 74 % when using CNN only, while it amounts to 92 % at the hybrid application of CNN+LSTM. The simulation results have demonstrated the high efficiency of the developed algorithm.