基于注意机制和知识图嵌入的混合推荐系统

Chunfang Dong, Xuchan Ju, Yue Ma
{"title":"基于注意机制和知识图嵌入的混合推荐系统","authors":"Chunfang Dong, Xuchan Ju, Yue Ma","doi":"10.1145/3498851.3498987","DOIUrl":null,"url":null,"abstract":"Traditional recommendation methods often have sparsity and cold start problems in real applications. Researchers found that introducing knowledge graphs into recommender systems as a kind of auxiliary information can alleviate these problems and improve the performance of the recommender systems. This paper put forward a Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding (HRS). It uses crosscompress unit and preference propagation respectively to enrich the features of items and users. In this process, we use the attention mechanism and knowledge graph embedding to enhance the recommender system. After obtaining the user vector representation and the item vector representation, we can predict the probability of the user clicking on the item. The experiments on three datasets derived from the actual scenes demonstrate the competitiveness of HRS, compared with several state-of-the-art baselines in the recommendation.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HRS: Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding\",\"authors\":\"Chunfang Dong, Xuchan Ju, Yue Ma\",\"doi\":\"10.1145/3498851.3498987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional recommendation methods often have sparsity and cold start problems in real applications. Researchers found that introducing knowledge graphs into recommender systems as a kind of auxiliary information can alleviate these problems and improve the performance of the recommender systems. This paper put forward a Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding (HRS). It uses crosscompress unit and preference propagation respectively to enrich the features of items and users. In this process, we use the attention mechanism and knowledge graph embedding to enhance the recommender system. After obtaining the user vector representation and the item vector representation, we can predict the probability of the user clicking on the item. The experiments on three datasets derived from the actual scenes demonstrate the competitiveness of HRS, compared with several state-of-the-art baselines in the recommendation.\",\"PeriodicalId\":89230,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3498851.3498987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498851.3498987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统的推荐方法在实际应用中往往存在稀疏性和冷启动问题。研究发现,将知识图作为一种辅助信息引入到推荐系统中,可以缓解这些问题,提高推荐系统的性能。提出了一种基于注意机制和知识图嵌入(HRS)的混合推荐系统。它分别使用交叉压缩单元和偏好传播来丰富物品和用户的特征。在这个过程中,我们使用了注意机制和知识图嵌入来增强推荐系统。在获得用户向量表示和物品向量表示后,我们可以预测用户点击物品的概率。通过对来自实际场景的三个数据集的实验,与推荐的几个最先进的基线相比,证明了HRS的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HRS: Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding
Traditional recommendation methods often have sparsity and cold start problems in real applications. Researchers found that introducing knowledge graphs into recommender systems as a kind of auxiliary information can alleviate these problems and improve the performance of the recommender systems. This paper put forward a Hybrid Recommendation System based on Attention Mechanism and Knowledge Graph Embedding (HRS). It uses crosscompress unit and preference propagation respectively to enrich the features of items and users. In this process, we use the attention mechanism and knowledge graph embedding to enhance the recommender system. After obtaining the user vector representation and the item vector representation, we can predict the probability of the user clicking on the item. The experiments on three datasets derived from the actual scenes demonstrate the competitiveness of HRS, compared with several state-of-the-art baselines in the recommendation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信