{"title":"al2o3包覆LiNi0.8Co0.15Al0.05O2/石墨烯复合材料作为高性能锂离子电池正极材料","authors":"M. M. Loghavi, M. Babaiee, R. Eqra","doi":"10.3233/mgc-220025","DOIUrl":null,"url":null,"abstract":"A cathode material composite containing Al2O3-coated LiNi0.8Co0.15Al0.05O2 (NCA) and graphene was prepared via a combination of ultrasonication and mechanical ball milling. No changes were observed in the crystalline structure of this material relative to the bare and Al2O3-coated LiNi0.8Co0.15Al0.05O2 materials based on the XRD spectrum. SEM images indicated that graphene was well distributed between the active material particles. The composite material was compared with the bare and Al2O3-coated active materials by electrochemical tests to evaluate its performance in the lithium-ion battery. The resistance values of the solid-electrolyte interphase layer and charge transfer were investigated during cycling by electrochemical impedance spectroscopy. The composite material provided the lowest resistance values with high stability during cycling. The capacity retention of the composite material was 27.7% more in comparison to the bare material during 50 cycles of charge/discharge at a 0.5C rate. Remarkably, the rate capability was improved by using the composite material, with a specific capacity of over 130.9 mAh g–1 at a 3C rate, which means delivering 62.9 mAh g–1 more capacity than the bare NCA. Graphene improved capacity retention and rate capability through the creation of a protective layer on the particles and providing a conductive medium in the electrode structure.","PeriodicalId":18027,"journal":{"name":"Main Group Chemistry","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Al2O3-coated LiNi0.8Co0.15Al0.05O2/ graphene composite as a high-performance cathode material for lithium-ion battery\",\"authors\":\"M. M. Loghavi, M. Babaiee, R. Eqra\",\"doi\":\"10.3233/mgc-220025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A cathode material composite containing Al2O3-coated LiNi0.8Co0.15Al0.05O2 (NCA) and graphene was prepared via a combination of ultrasonication and mechanical ball milling. No changes were observed in the crystalline structure of this material relative to the bare and Al2O3-coated LiNi0.8Co0.15Al0.05O2 materials based on the XRD spectrum. SEM images indicated that graphene was well distributed between the active material particles. The composite material was compared with the bare and Al2O3-coated active materials by electrochemical tests to evaluate its performance in the lithium-ion battery. The resistance values of the solid-electrolyte interphase layer and charge transfer were investigated during cycling by electrochemical impedance spectroscopy. The composite material provided the lowest resistance values with high stability during cycling. The capacity retention of the composite material was 27.7% more in comparison to the bare material during 50 cycles of charge/discharge at a 0.5C rate. Remarkably, the rate capability was improved by using the composite material, with a specific capacity of over 130.9 mAh g–1 at a 3C rate, which means delivering 62.9 mAh g–1 more capacity than the bare NCA. Graphene improved capacity retention and rate capability through the creation of a protective layer on the particles and providing a conductive medium in the electrode structure.\",\"PeriodicalId\":18027,\"journal\":{\"name\":\"Main Group Chemistry\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-220025\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220025","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
采用超声和机械球磨相结合的方法制备了al2o3包覆LiNi0.8Co0.15Al0.05O2 (NCA)和石墨烯复合正极材料。XRD谱分析表明,该材料的晶体结构与裸态和al2o3包覆的LiNi0.8Co0.15Al0.05O2材料相比没有变化。SEM图像表明,石墨烯在活性材料颗粒之间分布良好。通过电化学测试,将复合材料与裸活性材料和包覆活性材料进行比较,评价复合材料在锂离子电池中的性能。利用电化学阻抗谱研究了循环过程中固-电解质间层的电阻值和电荷转移。该复合材料在循环过程中具有最低的电阻值和高的稳定性。在0.5C充电/放电50次时,复合材料的容量保持率比裸材料高27.7%。值得注意的是,通过使用复合材料,速率能力得到了提高,在3C速率下的比容量超过130.9 mAh g-1,这意味着比裸NCA多提供62.9 mAh g-1的容量。石墨烯通过在颗粒上建立保护层和在电极结构中提供导电介质,提高了容量保持和速率能力。
Al2O3-coated LiNi0.8Co0.15Al0.05O2/ graphene composite as a high-performance cathode material for lithium-ion battery
A cathode material composite containing Al2O3-coated LiNi0.8Co0.15Al0.05O2 (NCA) and graphene was prepared via a combination of ultrasonication and mechanical ball milling. No changes were observed in the crystalline structure of this material relative to the bare and Al2O3-coated LiNi0.8Co0.15Al0.05O2 materials based on the XRD spectrum. SEM images indicated that graphene was well distributed between the active material particles. The composite material was compared with the bare and Al2O3-coated active materials by electrochemical tests to evaluate its performance in the lithium-ion battery. The resistance values of the solid-electrolyte interphase layer and charge transfer were investigated during cycling by electrochemical impedance spectroscopy. The composite material provided the lowest resistance values with high stability during cycling. The capacity retention of the composite material was 27.7% more in comparison to the bare material during 50 cycles of charge/discharge at a 0.5C rate. Remarkably, the rate capability was improved by using the composite material, with a specific capacity of over 130.9 mAh g–1 at a 3C rate, which means delivering 62.9 mAh g–1 more capacity than the bare NCA. Graphene improved capacity retention and rate capability through the creation of a protective layer on the particles and providing a conductive medium in the electrode structure.
期刊介绍:
Main Group Chemistry is intended to be a primary resource for all chemistry, engineering, biological, and materials researchers in both academia and in industry with an interest in the elements from the groups 1, 2, 12–18, lanthanides and actinides. The journal is committed to maintaining a high standard for its publications. This will be ensured by a rigorous peer-review process with most articles being reviewed by at least one editorial board member. Additionally, all manuscripts will be proofread and corrected by a dedicated copy editor located at the University of Kentucky.