颈总动脉轴壁位移与兰姆波有关

Z. Hao, Md. Mahfuzur Rahman, J. Au, Chloe E Athaide, L. Jutlah
{"title":"颈总动脉轴壁位移与兰姆波有关","authors":"Z. Hao, Md. Mahfuzur Rahman, J. Au, Chloe E Athaide, L. Jutlah","doi":"10.1115/1.4056267","DOIUrl":null,"url":null,"abstract":"\n As compared with its radial wall displacement, axial wall displacement at the common carotid artery (CCA) carries independent clinical values, but its physical mechanisms are unclear. This study aims to investigate whether axial wall displacement at the CCA is solely from Young waves. A pulse wave propagation theory is utilized to identify two types of waves, Young waves and Lamb waves, in an artery, and identifies two sources for axial wall displacement, wall shear stress and radial wall displacement gradient with a factor of the difference between axial and circumferential initial tension, which reveals the influence of axial initial tension on the waveform of axial wall displacement. Theoretical expressions are derived for calculating the waveforms of axial wall displacement and its two sources in the Young waves. With the measured pulsatile pressure and blood velocity at the CA of three healthy adults as the inputs, the waveforms of axial wall displacement in the Young waves are calculated at different values of axial initial tension, and are found to greatly differ from their measured counterparts. As such, the Lamb waves may contribute to axial wall displacement at the CCA and the associated physical and physiological implications are discussed. Given the clinical values of axial wall displacement at the CCA, the Lamb waves may play a non-negligible role in determining arterial health and needs to be further studied for a comprehensive assessment of arterial wall mechanics.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Axial Wall Displacement At the Common Carotid Artery is Associated with the Lamb Waves\",\"authors\":\"Z. Hao, Md. Mahfuzur Rahman, J. Au, Chloe E Athaide, L. Jutlah\",\"doi\":\"10.1115/1.4056267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As compared with its radial wall displacement, axial wall displacement at the common carotid artery (CCA) carries independent clinical values, but its physical mechanisms are unclear. This study aims to investigate whether axial wall displacement at the CCA is solely from Young waves. A pulse wave propagation theory is utilized to identify two types of waves, Young waves and Lamb waves, in an artery, and identifies two sources for axial wall displacement, wall shear stress and radial wall displacement gradient with a factor of the difference between axial and circumferential initial tension, which reveals the influence of axial initial tension on the waveform of axial wall displacement. Theoretical expressions are derived for calculating the waveforms of axial wall displacement and its two sources in the Young waves. With the measured pulsatile pressure and blood velocity at the CA of three healthy adults as the inputs, the waveforms of axial wall displacement in the Young waves are calculated at different values of axial initial tension, and are found to greatly differ from their measured counterparts. As such, the Lamb waves may contribute to axial wall displacement at the CCA and the associated physical and physiological implications are discussed. Given the clinical values of axial wall displacement at the CCA, the Lamb waves may play a non-negligible role in determining arterial health and needs to be further studied for a comprehensive assessment of arterial wall mechanics.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

颈总动脉轴向壁位移与其径向壁位移相比具有独立的临床价值,但其物理机制尚不清楚。本研究旨在探讨CCA轴向壁面位移是否完全由杨波引起。利用脉冲波传播理论识别了动脉内的Young波和Lamb波两种波类型,并以轴向初始张力与周向初始张力之差为因子,识别了轴壁位移的两个源——壁面剪应力和径向壁面位移梯度,揭示了轴向初始张力对轴壁位移波形的影响。导出了计算杨波中轴壁位移及其两个源的波形的理论表达式。以3名健康成人CA处的脉动压力和血流速度为输入,计算了不同初始轴向张力值下Young波中轴壁位移的波形,发现其与实测值存在较大差异。因此,兰姆波可能导致CCA的轴向壁面位移,并讨论了相关的物理和生理意义。考虑到CCA轴壁位移的临床价值,Lamb波在判断动脉健康方面可能起着不可忽视的作用,需要进一步研究以全面评估动脉壁力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Axial Wall Displacement At the Common Carotid Artery is Associated with the Lamb Waves
As compared with its radial wall displacement, axial wall displacement at the common carotid artery (CCA) carries independent clinical values, but its physical mechanisms are unclear. This study aims to investigate whether axial wall displacement at the CCA is solely from Young waves. A pulse wave propagation theory is utilized to identify two types of waves, Young waves and Lamb waves, in an artery, and identifies two sources for axial wall displacement, wall shear stress and radial wall displacement gradient with a factor of the difference between axial and circumferential initial tension, which reveals the influence of axial initial tension on the waveform of axial wall displacement. Theoretical expressions are derived for calculating the waveforms of axial wall displacement and its two sources in the Young waves. With the measured pulsatile pressure and blood velocity at the CA of three healthy adults as the inputs, the waveforms of axial wall displacement in the Young waves are calculated at different values of axial initial tension, and are found to greatly differ from their measured counterparts. As such, the Lamb waves may contribute to axial wall displacement at the CCA and the associated physical and physiological implications are discussed. Given the clinical values of axial wall displacement at the CCA, the Lamb waves may play a non-negligible role in determining arterial health and needs to be further studied for a comprehensive assessment of arterial wall mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信