近似单群共轭元的代论(2)𝐹4(𝑞2)

Pub Date : 2022-12-28 DOI:10.1515/jgth-2022-0216
D. Revin, A. Zavarnitsine
{"title":"近似单群共轭元的代论(2)𝐹4(𝑞2)","authors":"D. Revin, A. Zavarnitsine","doi":"10.1515/jgth-2022-0216","DOIUrl":null,"url":null,"abstract":"Abstract We prove that if L = F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ L={}^{2}F_{4}(2^{2n+1})^{\\prime} and 𝑥 is a nonidentity automorphism of 𝐿, then G = ⟨ L , x ⟩ G=\\langle L,x\\rangle has four elements conjugate to 𝑥 that generate 𝐺. This result is used to study the following conjecture about the 𝜋-radical of a finite group. Let 𝜋 be a proper subset of the set of all primes and let 𝑟 be the least prime not belonging to 𝜋. Set m = r m=r if r = 2 r=2 or 3 and m = r − 1 m=r-1 if r ⩾ 5 r\\geqslant 5 . Supposedly, an element 𝑥 of a finite group 𝐺 is contained in the 𝜋-radical O π ⁡ ( G ) \\operatorname{O}_{\\pi}(G) if and only if every 𝑚 conjugates of 𝑥 generate a 𝜋-subgroup. Based on the results of this and previous papers, the conjecture is confirmed for all finite groups whose every nonabelian composition factor is isomorphic to a sporadic, alternating, linear, unitary simple group, or to one of the groups of type B 2 2 ⁢ ( 2 2 ⁢ n + 1 ) {}^{2}B_{2}(2^{2n+1}) , G 2 2 ⁢ ( 3 2 ⁢ n + 1 ) {}^{2}G_{2}(3^{2n+1}) , F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ {}^{2}F_{4}(2^{2n+1})^{\\prime} , G 2 ⁢ ( q ) G_{2}(q) , or D 4 3 ⁢ ( q ) {}^{3}D_{4}(q) .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generations by conjugate elements in almost simple groups with socle 2𝐹4(𝑞2)′\",\"authors\":\"D. Revin, A. Zavarnitsine\",\"doi\":\"10.1515/jgth-2022-0216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove that if L = F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ L={}^{2}F_{4}(2^{2n+1})^{\\\\prime} and 𝑥 is a nonidentity automorphism of 𝐿, then G = ⟨ L , x ⟩ G=\\\\langle L,x\\\\rangle has four elements conjugate to 𝑥 that generate 𝐺. This result is used to study the following conjecture about the 𝜋-radical of a finite group. Let 𝜋 be a proper subset of the set of all primes and let 𝑟 be the least prime not belonging to 𝜋. Set m = r m=r if r = 2 r=2 or 3 and m = r − 1 m=r-1 if r ⩾ 5 r\\\\geqslant 5 . Supposedly, an element 𝑥 of a finite group 𝐺 is contained in the 𝜋-radical O π ⁡ ( G ) \\\\operatorname{O}_{\\\\pi}(G) if and only if every 𝑚 conjugates of 𝑥 generate a 𝜋-subgroup. Based on the results of this and previous papers, the conjecture is confirmed for all finite groups whose every nonabelian composition factor is isomorphic to a sporadic, alternating, linear, unitary simple group, or to one of the groups of type B 2 2 ⁢ ( 2 2 ⁢ n + 1 ) {}^{2}B_{2}(2^{2n+1}) , G 2 2 ⁢ ( 3 2 ⁢ n + 1 ) {}^{2}G_{2}(3^{2n+1}) , F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ {}^{2}F_{4}(2^{2n+1})^{\\\\prime} , G 2 ⁢ ( q ) G_{2}(q) , or D 4 3 ⁢ ( q ) {}^{3}D_{4}(q) .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要证明了若L= F 4 2 (22 2 n + 1) ' L={}^{2}f_{4}(2^{2n+1})^{\prime} 并且s1是𝐿的非恒等自同构,则G=⟨L, x⟩G=\langle L,x\rangle 有四个元素共轭到1,生成𝐺。利用这一结果研究了有限群的𝜋-radical的猜想。设0是所有素数集合的一个固有子集,设𝑟是不属于0的最小素数。设m=r,如果r=2,则设m=r,如果r=2或3,则设m=r−1,如果r小于5 r,则设m=r = 1\geqslant 5 . 假设,一个有限群𝐺的元素≥1包含在𝜋-radical O π (G) \operatorname{O}_{\pi}(G)当且仅当所有的𝑚共轭式都产生𝜋-subgroup。基于本论文和前几篇论文的结果,对于所有非贝尔组成因子同构于一个偶发的、交替的、线性的、酉的单群或B型群中的一个22²(22²²n + 1)的有限群,证实了这个猜想。 {}^{2}b……{2}(2^{2n+1}), g22减去(32减去n + 1) {}^{2}g_{2}(3^{2n+1}), f42减去(22减去n + 1) {}^{2}f_{4}(2^{2n+1})^{\prime} , g2∑(q) G_{2}(q)或者d43∑(q) {}^{3.}d_{4}(q)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On generations by conjugate elements in almost simple groups with socle 2𝐹4(𝑞2)′
Abstract We prove that if L = F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ L={}^{2}F_{4}(2^{2n+1})^{\prime} and 𝑥 is a nonidentity automorphism of 𝐿, then G = ⟨ L , x ⟩ G=\langle L,x\rangle has four elements conjugate to 𝑥 that generate 𝐺. This result is used to study the following conjecture about the 𝜋-radical of a finite group. Let 𝜋 be a proper subset of the set of all primes and let 𝑟 be the least prime not belonging to 𝜋. Set m = r m=r if r = 2 r=2 or 3 and m = r − 1 m=r-1 if r ⩾ 5 r\geqslant 5 . Supposedly, an element 𝑥 of a finite group 𝐺 is contained in the 𝜋-radical O π ⁡ ( G ) \operatorname{O}_{\pi}(G) if and only if every 𝑚 conjugates of 𝑥 generate a 𝜋-subgroup. Based on the results of this and previous papers, the conjecture is confirmed for all finite groups whose every nonabelian composition factor is isomorphic to a sporadic, alternating, linear, unitary simple group, or to one of the groups of type B 2 2 ⁢ ( 2 2 ⁢ n + 1 ) {}^{2}B_{2}(2^{2n+1}) , G 2 2 ⁢ ( 3 2 ⁢ n + 1 ) {}^{2}G_{2}(3^{2n+1}) , F 4 2 ⁢ ( 2 2 ⁢ n + 1 ) ′ {}^{2}F_{4}(2^{2n+1})^{\prime} , G 2 ⁢ ( q ) G_{2}(q) , or D 4 3 ⁢ ( q ) {}^{3}D_{4}(q) .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信