{"title":"改善掺硼酸硬质聚氨酯材料的结构和物理性能","authors":"İbrahim Kırbaş","doi":"10.1177/26349833211010819","DOIUrl":null,"url":null,"abstract":"In this study, the internal structure and physical properties of boric acid-doped rigid polyurethane (PU) materials were investigated. 5%, 10%, and 15% of boric acid were added into PU material compared to the total mass. These rigid PUs were subjected to scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermal conductivity, and density determination for analysis. Boric acid addition resulted in a decrease of 57.2% in thermal conductivity and 67.8% in density compared to raw PU material. It has been shown that it provides support for the formation of cell structure. In addition to, it is also found that there are no impurity atoms in the structure and the structure is formed in the tetragonal phase.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving the structural and physical properties of boric acid-doped rigid polyurethane materials\",\"authors\":\"İbrahim Kırbaş\",\"doi\":\"10.1177/26349833211010819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the internal structure and physical properties of boric acid-doped rigid polyurethane (PU) materials were investigated. 5%, 10%, and 15% of boric acid were added into PU material compared to the total mass. These rigid PUs were subjected to scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermal conductivity, and density determination for analysis. Boric acid addition resulted in a decrease of 57.2% in thermal conductivity and 67.8% in density compared to raw PU material. It has been shown that it provides support for the formation of cell structure. In addition to, it is also found that there are no impurity atoms in the structure and the structure is formed in the tetragonal phase.\",\"PeriodicalId\":10608,\"journal\":{\"name\":\"Composites and Advanced Materials\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites and Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/26349833211010819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833211010819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving the structural and physical properties of boric acid-doped rigid polyurethane materials
In this study, the internal structure and physical properties of boric acid-doped rigid polyurethane (PU) materials were investigated. 5%, 10%, and 15% of boric acid were added into PU material compared to the total mass. These rigid PUs were subjected to scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermal conductivity, and density determination for analysis. Boric acid addition resulted in a decrease of 57.2% in thermal conductivity and 67.8% in density compared to raw PU material. It has been shown that it provides support for the formation of cell structure. In addition to, it is also found that there are no impurity atoms in the structure and the structure is formed in the tetragonal phase.