{"title":"不同温度和应变速率下6061铝合金单段和两段成形极限曲线的研究","authors":"M. Shekarzadeh, Ebrahim Hosseini","doi":"10.15282/ijame.19.2.2022.18.0760","DOIUrl":null,"url":null,"abstract":"The Form Limit Curve (FLC) is an important and helpful concept for defining sheet metal ductility. The ductility of aluminum 6061 alloy sheet was analyzed in this work. The current study examined how to enhance the formation curve of aluminum 6061, which is frequently utilized in the automotive industry. These curves were plotted and compared at various temperatures and strain levels. Using the finite element approach, the formation curve of this alloy was produced under the impact of various temperatures and strain rates. The forming limit curve was accomplished in two-stage forming when the pre-stress was formed in the sheet, and this curve was predicted for different temperatures using the one-stage forming behavior pattern. It was determined that increasing the temperature led the curve to rise and fall, but increasing the strain rate caused the curve to fall and contract. It was also revealed that by using the curvature of the forming limit curve in single-stage forming at various temperatures and a two-stage forming limit curve at one temperature, it was feasible to estimate two-stage FLC at two temperatures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of Single-stage and Two-stage Forming Limit Curve of Aluminum 6061 with Different Temperatures and Strain Rates\",\"authors\":\"M. Shekarzadeh, Ebrahim Hosseini\",\"doi\":\"10.15282/ijame.19.2.2022.18.0760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Form Limit Curve (FLC) is an important and helpful concept for defining sheet metal ductility. The ductility of aluminum 6061 alloy sheet was analyzed in this work. The current study examined how to enhance the formation curve of aluminum 6061, which is frequently utilized in the automotive industry. These curves were plotted and compared at various temperatures and strain levels. Using the finite element approach, the formation curve of this alloy was produced under the impact of various temperatures and strain rates. The forming limit curve was accomplished in two-stage forming when the pre-stress was formed in the sheet, and this curve was predicted for different temperatures using the one-stage forming behavior pattern. It was determined that increasing the temperature led the curve to rise and fall, but increasing the strain rate caused the curve to fall and contract. It was also revealed that by using the curvature of the forming limit curve in single-stage forming at various temperatures and a two-stage forming limit curve at one temperature, it was feasible to estimate two-stage FLC at two temperatures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.19.2.2022.18.0760\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.2.2022.18.0760","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Single-stage and Two-stage Forming Limit Curve of Aluminum 6061 with Different Temperatures and Strain Rates
The Form Limit Curve (FLC) is an important and helpful concept for defining sheet metal ductility. The ductility of aluminum 6061 alloy sheet was analyzed in this work. The current study examined how to enhance the formation curve of aluminum 6061, which is frequently utilized in the automotive industry. These curves were plotted and compared at various temperatures and strain levels. Using the finite element approach, the formation curve of this alloy was produced under the impact of various temperatures and strain rates. The forming limit curve was accomplished in two-stage forming when the pre-stress was formed in the sheet, and this curve was predicted for different temperatures using the one-stage forming behavior pattern. It was determined that increasing the temperature led the curve to rise and fall, but increasing the strain rate caused the curve to fall and contract. It was also revealed that by using the curvature of the forming limit curve in single-stage forming at various temperatures and a two-stage forming limit curve at one temperature, it was feasible to estimate two-stage FLC at two temperatures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.