热泵在住宅区域供热中应用的技术可能性研究

A. Rogoža, V. Misevičiūtė
{"title":"热泵在住宅区域供热中应用的技术可能性研究","authors":"A. Rogoža, V. Misevičiūtė","doi":"10.3846/mla.2022.17224","DOIUrl":null,"url":null,"abstract":"The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European countries. One of the measures planned for the Lithuanian energy policy in the heat sector of renewable energy sources (RES) until 2030 is the installation of heat pumps (HP) in the DH networks. The purpose of the study is to evaluate the technological possibilities of integrating HP into existing buildings to evaluate the low temperature heat supply. To evaluate the potential temperature lowering of the building heating system, a graph of the lowest possible building heating system temperatures is set, according to which the heat pump for the heating substation is selected, which would raise the temperature of the heat carrier supplied from DH networks to the required temperature for the heating and hot water systems of the building. Applying thermodynamic analysis, a mathematical model is developed that evaluates the ability of the HP to raise the temperature of the supplied heat carrier at the heat substation and determines the energy efficiency of such a solution. During the simulation, two alternatives of constant (regardless of outdoor air temperature) heat carrier temperatures supplied from DH networks were considered: 60 °C (alternative A) and 55 °C (alternative B). To adapt the most appropriate option for the integration of HP, it would be appropriate to combine both alternatives, i. y. to supply 60 °C from the DH network in the cold period of the year and 55 °C in the warm period of the year.","PeriodicalId":30324,"journal":{"name":"Mokslas Lietuvos Ateitis","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RESEARCH OF TECHNOLOGICAL POSSIBILITIES OF HEAT PUMPS’ APPLICATION IN DISTRICT HEATING OF RESIDENTIAL BUILDINGS\",\"authors\":\"A. Rogoža, V. Misevičiūtė\",\"doi\":\"10.3846/mla.2022.17224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European countries. One of the measures planned for the Lithuanian energy policy in the heat sector of renewable energy sources (RES) until 2030 is the installation of heat pumps (HP) in the DH networks. The purpose of the study is to evaluate the technological possibilities of integrating HP into existing buildings to evaluate the low temperature heat supply. To evaluate the potential temperature lowering of the building heating system, a graph of the lowest possible building heating system temperatures is set, according to which the heat pump for the heating substation is selected, which would raise the temperature of the heat carrier supplied from DH networks to the required temperature for the heating and hot water systems of the building. Applying thermodynamic analysis, a mathematical model is developed that evaluates the ability of the HP to raise the temperature of the supplied heat carrier at the heat substation and determines the energy efficiency of such a solution. During the simulation, two alternatives of constant (regardless of outdoor air temperature) heat carrier temperatures supplied from DH networks were considered: 60 °C (alternative A) and 55 °C (alternative B). To adapt the most appropriate option for the integration of HP, it would be appropriate to combine both alternatives, i. y. to supply 60 °C from the DH network in the cold period of the year and 55 °C in the warm period of the year.\",\"PeriodicalId\":30324,\"journal\":{\"name\":\"Mokslas Lietuvos Ateitis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mokslas Lietuvos Ateitis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3846/mla.2022.17224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mokslas Lietuvos Ateitis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/mla.2022.17224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

区域供热(DH)系统的主要用户是多公寓建筑-立陶宛53%的这些建筑由DH系统提供热量。建筑物的供暖系统是最大的最终能源消耗者,在许多欧洲国家几乎占总能源消耗的一半。到2030年,立陶宛能源政策中可再生能源(RES)供热部门计划的措施之一是在DH网络中安装热泵(HP)。本研究的目的是评估将HP整合到现有建筑中以评估低温供热的技术可能性。为了评估建筑采暖系统的潜在降温能力,我们绘制了一个建筑采暖系统可能的最低温度图,并据此选择供热站的热泵,将DH网络提供的热载体的温度提高到建筑采暖和热水系统所需的温度。应用热力学分析,建立了一个数学模型,以评估高压提高热交换站供热体温度的能力,并确定这种解决方案的能源效率。在模拟过程中,考虑了DH网络提供的恒定(室外空气温度)热载体温度的两种替代方案:60°C(替代方案A)和55°C(替代方案B)。为了适应HP集成的最合适选择,将两种替代方案结合起来是合适的,即在一年的寒冷时期从DH网络提供60°C,在一年的温暖时期提供55°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESEARCH OF TECHNOLOGICAL POSSIBILITIES OF HEAT PUMPS’ APPLICATION IN DISTRICT HEATING OF RESIDENTIAL BUILDINGS
The main users of district heating (DH) systems are multi-apartment buildings – 53% of these buildings in Lithuania are supplied with heat from DH systems. Heating systems in buildings are the largest final consumer of energy, accounting for almost half of total energy consumption in many European countries. One of the measures planned for the Lithuanian energy policy in the heat sector of renewable energy sources (RES) until 2030 is the installation of heat pumps (HP) in the DH networks. The purpose of the study is to evaluate the technological possibilities of integrating HP into existing buildings to evaluate the low temperature heat supply. To evaluate the potential temperature lowering of the building heating system, a graph of the lowest possible building heating system temperatures is set, according to which the heat pump for the heating substation is selected, which would raise the temperature of the heat carrier supplied from DH networks to the required temperature for the heating and hot water systems of the building. Applying thermodynamic analysis, a mathematical model is developed that evaluates the ability of the HP to raise the temperature of the supplied heat carrier at the heat substation and determines the energy efficiency of such a solution. During the simulation, two alternatives of constant (regardless of outdoor air temperature) heat carrier temperatures supplied from DH networks were considered: 60 °C (alternative A) and 55 °C (alternative B). To adapt the most appropriate option for the integration of HP, it would be appropriate to combine both alternatives, i. y. to supply 60 °C from the DH network in the cold period of the year and 55 °C in the warm period of the year.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信