结构屈曲非线性分析的鲁棒高效迭代策略

D. Magisano, F. Liguori, L. Leonetti, G. Garcea
{"title":"结构屈曲非线性分析的鲁棒高效迭代策略","authors":"D. Magisano, F. Liguori, L. Leonetti, G. Garcea","doi":"10.2139/ssrn.3868245","DOIUrl":null,"url":null,"abstract":"The paper shows how to make the incremental-iterative solution significantly more efficient and robust in geometrically non-linear structural problems discretized via displacement-based finite element formulations. The main idea is to relax the constitutive equations at each integration point (IP) during the iterations. The converged solution remains unchanged while the iteration matrix is computed using independent IP stresses. This reduces the number of iterations to obtain convergence and allows very large steps in incremental analyses. The computational cost of each iteration is the same as the original Newton method. Importantly, the robustness of the iterative process is unaffected by high membraneto-flexural stiffness ratios as opposite to the standard Newton method.","PeriodicalId":18255,"journal":{"name":"MatSciRN: Process & Device Modeling (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust and efficient iterative strategy for nonlinear analysis of structures subjected to buckling\",\"authors\":\"D. Magisano, F. Liguori, L. Leonetti, G. Garcea\",\"doi\":\"10.2139/ssrn.3868245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper shows how to make the incremental-iterative solution significantly more efficient and robust in geometrically non-linear structural problems discretized via displacement-based finite element formulations. The main idea is to relax the constitutive equations at each integration point (IP) during the iterations. The converged solution remains unchanged while the iteration matrix is computed using independent IP stresses. This reduces the number of iterations to obtain convergence and allows very large steps in incremental analyses. The computational cost of each iteration is the same as the original Newton method. Importantly, the robustness of the iterative process is unaffected by high membraneto-flexural stiffness ratios as opposite to the standard Newton method.\",\"PeriodicalId\":18255,\"journal\":{\"name\":\"MatSciRN: Process & Device Modeling (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Process & Device Modeling (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3868245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Process & Device Modeling (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3868245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文展示了如何在基于位移的有限元公式离散的几何非线性结构问题中显著提高增量迭代解的效率和鲁棒性。其主要思想是在迭代过程中对各积分点的本构方程进行松弛。当使用独立的IP应力计算迭代矩阵时,收敛解保持不变。这减少了获得收敛的迭代次数,并允许在增量分析中进行非常大的步骤。每次迭代的计算量与原牛顿法相同。重要的是,与标准牛顿方法相反,迭代过程的鲁棒性不受高膜-弯曲刚度比的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A robust and efficient iterative strategy for nonlinear analysis of structures subjected to buckling
The paper shows how to make the incremental-iterative solution significantly more efficient and robust in geometrically non-linear structural problems discretized via displacement-based finite element formulations. The main idea is to relax the constitutive equations at each integration point (IP) during the iterations. The converged solution remains unchanged while the iteration matrix is computed using independent IP stresses. This reduces the number of iterations to obtain convergence and allows very large steps in incremental analyses. The computational cost of each iteration is the same as the original Newton method. Importantly, the robustness of the iterative process is unaffected by high membraneto-flexural stiffness ratios as opposite to the standard Newton method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信