Hopfield神经网络的FPGA优化实现

W. Mansour, R. Ayoubi, H. Ziade, R. Velazco, W. Falou
{"title":"Hopfield神经网络的FPGA优化实现","authors":"W. Mansour, R. Ayoubi, H. Ziade, R. Velazco, W. Falou","doi":"10.1155/2011/189368","DOIUrl":null,"url":null,"abstract":"The associative Hopfield memory is a form of recurrent Artificial Neural Network (ANN) that can be used in applications such as pattern recognition, noise removal, information retrieval, and combinatorial optimization problems. This paper presents the implementation of the Hopfield Neural Network (HNN) parallel architecture on a SRAM-based FPGA. Themain advantage of the proposed implementation is its high performance and cost effectiveness: it requires O(1) multiplications and O(log N) additions, whereas most others require O(N) multiplications and O(N) additions.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"2 1","pages":"189368:1-189368:9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An Optimal Implementation on FPGA of a Hopfield Neural Network\",\"authors\":\"W. Mansour, R. Ayoubi, H. Ziade, R. Velazco, W. Falou\",\"doi\":\"10.1155/2011/189368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The associative Hopfield memory is a form of recurrent Artificial Neural Network (ANN) that can be used in applications such as pattern recognition, noise removal, information retrieval, and combinatorial optimization problems. This paper presents the implementation of the Hopfield Neural Network (HNN) parallel architecture on a SRAM-based FPGA. Themain advantage of the proposed implementation is its high performance and cost effectiveness: it requires O(1) multiplications and O(log N) additions, whereas most others require O(N) multiplications and O(N) additions.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"2 1\",\"pages\":\"189368:1-189368:9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/189368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/189368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

联想Hopfield记忆是递归人工神经网络(ANN)的一种形式,可用于模式识别、噪声去除、信息检索和组合优化问题等应用。本文介绍了在基于sram的FPGA上实现Hopfield神经网络(HNN)并行架构。所提出的实现的主要优点是其高性能和成本效益:它需要O(1)次乘法和O(log N)次加法,而大多数其他实现需要O(N)次乘法和O(N)次加法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimal Implementation on FPGA of a Hopfield Neural Network
The associative Hopfield memory is a form of recurrent Artificial Neural Network (ANN) that can be used in applications such as pattern recognition, noise removal, information retrieval, and combinatorial optimization problems. This paper presents the implementation of the Hopfield Neural Network (HNN) parallel architecture on a SRAM-based FPGA. Themain advantage of the proposed implementation is its high performance and cost effectiveness: it requires O(1) multiplications and O(log N) additions, whereas most others require O(N) multiplications and O(N) additions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信