一类退化稳定驱动SDEs的参数化方法

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Lorick Huang, S. Menozzi
{"title":"一类退化稳定驱动SDEs的参数化方法","authors":"Lorick Huang, S. Menozzi","doi":"10.1214/15-AIHP704","DOIUrl":null,"url":null,"abstract":"We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak Hormander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds reflecting the multi-scale behavior of the process.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"87 1","pages":"1925-1975"},"PeriodicalIF":1.2000,"publicationDate":"2014-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A parametrix approach for some degenerate stable driven SDEs\",\"authors\":\"Lorick Huang, S. Menozzi\",\"doi\":\"10.1214/15-AIHP704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak Hormander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds reflecting the multi-scale behavior of the process.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"87 1\",\"pages\":\"1925-1975\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP704\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP704","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 25

摘要

考虑一类系数满足弱Hormander条件的稳定驱动退化随机微分方程。在温和平滑的假设下,我们证明了相关生成器的鞅问题在一些维数约束下的唯一性。此外,当驱动噪声为标量调质时,我们建立了反映过程多尺度行为的密度边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parametrix approach for some degenerate stable driven SDEs
We consider a stable driven degenerate stochastic differential equation, whose coefficients satisfy a kind of weak Hormander condition. Under mild smoothness assumptions we prove the uniqueness of the martingale problem for the associated generator under some dimension constraints. Also, when the driving noise is scalar and tempered, we establish density bounds reflecting the multi-scale behavior of the process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信