利用CO - ro振动发射对赫比格51星内部气体盘的空间解析

IF 0.3 Q4 COMMUNICATION
R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J
{"title":"利用CO - ro振动发射对赫比格51星内部气体盘的空间解析","authors":"R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J","doi":"10.18727/0722-6691/5174","DOIUrl":null,"url":null,"abstract":"1 GRAVITY operates in the near-infrared K-band, i.e., with wavelengths between 2 and 2.5 μm. 2 PIONIER at the VLTI operates in the near-infrared H-band, i.e., with wavelengths between 1.5 and 1.8 μm. 3 MATISSE at the VLTI operates in the mid-infrared L-, M-, and N-bands, i.e., with wavelengths between 3 and 13 μm (Lopez et al., 2018). emission we measured with GRAVITY is located at positions smaller than the critical radius where the gap is expected to form as a result of to extreme-/farultraviolet/X-ray heating, the discs in our sample might be shaped by forming young planets rather than by depletion resulting from photoevaporation (Figure 2).","PeriodicalId":41738,"journal":{"name":"Jurnal The Messenger","volume":"19 1","pages":"40-42"},"PeriodicalIF":0.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatially Resolving the Inner Gaseous Disc of the Herbig Star 51 Oph through its CO Ro-vibration Emission\",\"authors\":\"R. Abuter, M. Accardo, T. Adler, A. Amorim, N. Anugu, G. Ávila, M. Bauböck, M. Benisty, J. Berger, J. Bestenlehner, H. Beust, N. Blind, M. Bonnefoy, H. Bonnet, P. Bourget, J. Bouvier, W. Brandner, R. Brast, A. Buron, L. Burtscher, F. Cantalloube, A. C. O. Garatti, P. Caselli, F. Cassaing, F. Chapron, B. Charnay, É. Choquet, Y. Clénet, C. Collin, V. C. Foresto, R. Davies, C. Deen, F. Delplancke-Ströbele, R. Dembet, F. Dérie, W. D. Wit, J. Dexter, T. Zeeuw, C. Dougados, G. Dubus, G. Duvert, M. Ebert, A. Eckart, F. Eisenhauer, M. Esselborn, F. Eupen, P. Fédou, M. Ferreira, G. Finger, N. F. Schreiber, F. Gao, C. G. Dabo, R. G. López, P. Garcia, E. Gendron, R. Genzel, O. Gerhard, J. Gil, S. Gillessen, F. Gonté, P. Gordo, D. Gratadour, A. Greenbaum, R. Grellmann, U. Grözinger, P. Guajardo, S. Guieu, M. Habibi, P. Haguenauer, O. Hans, X. Haubois, M. Haug, F. Haussmann, T. Henning, S. Hippler, S. Hönig, M. Horrobin, A. Huber, Z. Hubert, N. Hubin, C. Hummel, G. Jakob, A. Janssen, A. Rosales, L. Jochum, L. Jocou, J\",\"doi\":\"10.18727/0722-6691/5174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1 GRAVITY operates in the near-infrared K-band, i.e., with wavelengths between 2 and 2.5 μm. 2 PIONIER at the VLTI operates in the near-infrared H-band, i.e., with wavelengths between 1.5 and 1.8 μm. 3 MATISSE at the VLTI operates in the mid-infrared L-, M-, and N-bands, i.e., with wavelengths between 3 and 13 μm (Lopez et al., 2018). emission we measured with GRAVITY is located at positions smaller than the critical radius where the gap is expected to form as a result of to extreme-/farultraviolet/X-ray heating, the discs in our sample might be shaped by forming young planets rather than by depletion resulting from photoevaporation (Figure 2).\",\"PeriodicalId\":41738,\"journal\":{\"name\":\"Jurnal The Messenger\",\"volume\":\"19 1\",\"pages\":\"40-42\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal The Messenger\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18727/0722-6691/5174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMMUNICATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal The Messenger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18727/0722-6691/5174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0

摘要

1 GRAVITY工作在近红外k波段,即波长在2 ~ 2.5 μm之间。VLTI的2 PIONIER工作在近红外h波段,即波长在1.5 ~ 1.8 μm之间。3 VLTI的MATISSE在中红外波段L-、M-和n波段工作,即波长在3到13 μm之间(Lopez等人,2018)。我们用重力测量的辐射位于小于临界半径的位置,在那里由于极紫外/远紫外/ x射线加热预计会形成间隙,我们样品中的圆盘可能是通过形成年轻行星而不是通过光蒸发导致的耗尽而形成的(图2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially Resolving the Inner Gaseous Disc of the Herbig Star 51 Oph through its CO Ro-vibration Emission
1 GRAVITY operates in the near-infrared K-band, i.e., with wavelengths between 2 and 2.5 μm. 2 PIONIER at the VLTI operates in the near-infrared H-band, i.e., with wavelengths between 1.5 and 1.8 μm. 3 MATISSE at the VLTI operates in the mid-infrared L-, M-, and N-bands, i.e., with wavelengths between 3 and 13 μm (Lopez et al., 2018). emission we measured with GRAVITY is located at positions smaller than the critical radius where the gap is expected to form as a result of to extreme-/farultraviolet/X-ray heating, the discs in our sample might be shaped by forming young planets rather than by depletion resulting from photoevaporation (Figure 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal The Messenger
Jurnal The Messenger COMMUNICATION-
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信