基于多传感器影像的马郎红树林保护区红树林表面碳储量测绘

Maulana G.A. Hakim, M. Kamal, S. Arjasakusuma
{"title":"基于多传感器影像的马郎红树林保护区红树林表面碳储量测绘","authors":"Maulana G.A. Hakim, M. Kamal, S. Arjasakusuma","doi":"10.24114/jg.v14i2.33575","DOIUrl":null,"url":null,"abstract":"Mangroves can store carbon effectively with a value of about 1,023 Mg C/Ha and become one of the richest forests that store 4-20 billion tons of blue carbon globally. Remote sensing imagery can be used to map mangrove surface carbon stocks using radar and optical image sensors. Generally, forest carbon on earth is stored in two places, namely above the surface (Above Ground Carbon, AGC) and below the surface (Below Ground Carbon, BGC). This study aims to estimate the surface carbon stock of mangroves using multisensory imagery using the Random Forest method in the Clungup Mangrove Conservation (CMC) area, Malang Regency, East Java. Four vegetation indices (IRECI, NDI45, NDVI, SAVI), single band, and VV VH polarization were used as predictive variables. Estimating the carbon stock mangrove value using Sentinel-1 imagery produced 2,126 tons of C with R² 0.11. Meanwhile, Sentinel-2 produces an estimated carbon value of 2,025 tons C with an R² of 0.22. The estimation model using Sentinel-2 shows a better evaluation value with a Root Mean Squared Error (RMSE) of 0.89 and a Mean Absolute Error (MAE) of 0.75. The IRECI vegetation index is the most important variable in estimating carbon stocks. The results of the mapping accuracy of the Sentinel-1 model show a value of 34.73% and Sentinel-2 35.03%.Keywords: Mangrove, Carbon, Sentinel-1, Sentinel-2, Random Forest","PeriodicalId":31787,"journal":{"name":"Jurnal Geografi","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAPPING MANGROVE SURFACE CARBON STOCKS USING MULTISENSOR IMAGERY IN CLUNGUP MANGROVE CONSERVATION (CMC) MALANG REGENCY\",\"authors\":\"Maulana G.A. Hakim, M. Kamal, S. Arjasakusuma\",\"doi\":\"10.24114/jg.v14i2.33575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mangroves can store carbon effectively with a value of about 1,023 Mg C/Ha and become one of the richest forests that store 4-20 billion tons of blue carbon globally. Remote sensing imagery can be used to map mangrove surface carbon stocks using radar and optical image sensors. Generally, forest carbon on earth is stored in two places, namely above the surface (Above Ground Carbon, AGC) and below the surface (Below Ground Carbon, BGC). This study aims to estimate the surface carbon stock of mangroves using multisensory imagery using the Random Forest method in the Clungup Mangrove Conservation (CMC) area, Malang Regency, East Java. Four vegetation indices (IRECI, NDI45, NDVI, SAVI), single band, and VV VH polarization were used as predictive variables. Estimating the carbon stock mangrove value using Sentinel-1 imagery produced 2,126 tons of C with R² 0.11. Meanwhile, Sentinel-2 produces an estimated carbon value of 2,025 tons C with an R² of 0.22. The estimation model using Sentinel-2 shows a better evaluation value with a Root Mean Squared Error (RMSE) of 0.89 and a Mean Absolute Error (MAE) of 0.75. The IRECI vegetation index is the most important variable in estimating carbon stocks. The results of the mapping accuracy of the Sentinel-1 model show a value of 34.73% and Sentinel-2 35.03%.Keywords: Mangrove, Carbon, Sentinel-1, Sentinel-2, Random Forest\",\"PeriodicalId\":31787,\"journal\":{\"name\":\"Jurnal Geografi\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Geografi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/jg.v14i2.33575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/jg.v14i2.33575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

红树林可以有效地储存碳,其价值约为1023毫克碳/公顷,成为全球储存40 - 200亿吨蓝碳最丰富的森林之一。遥感影像可用于利用雷达和光学图像传感器绘制红树林表面碳储量。一般来说,地球上的森林碳储存在地表以上(above Ground carbon, AGC)和地表以下(below Ground carbon, BGC)两个地方。本研究旨在利用随机森林方法,利用多感官图像估算东爪哇玛琅县Clungup红树林保护区(CMC)红树林的表面碳储量。4种植被指数(IRECI、NDI45、NDVI、SAVI)、单波段和VV - VH极化作为预测变量。利用Sentinel-1图像估算红树林碳储量,产生2126吨碳,R²0.11。与此同时,哨兵2号产生的碳价值估计为2025吨碳,R²为0.22。基于Sentinel-2的估计模型具有较好的评价价值,均方根误差(RMSE)为0.89,平均绝对误差(MAE)为0.75。IRECI植被指数是估算碳储量最重要的变量。Sentinel-1模型的成图精度为34.73%,Sentinel-2模型为35.03%。关键词:红树林,碳,哨兵1号,哨兵2号,随机森林
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAPPING MANGROVE SURFACE CARBON STOCKS USING MULTISENSOR IMAGERY IN CLUNGUP MANGROVE CONSERVATION (CMC) MALANG REGENCY
Mangroves can store carbon effectively with a value of about 1,023 Mg C/Ha and become one of the richest forests that store 4-20 billion tons of blue carbon globally. Remote sensing imagery can be used to map mangrove surface carbon stocks using radar and optical image sensors. Generally, forest carbon on earth is stored in two places, namely above the surface (Above Ground Carbon, AGC) and below the surface (Below Ground Carbon, BGC). This study aims to estimate the surface carbon stock of mangroves using multisensory imagery using the Random Forest method in the Clungup Mangrove Conservation (CMC) area, Malang Regency, East Java. Four vegetation indices (IRECI, NDI45, NDVI, SAVI), single band, and VV VH polarization were used as predictive variables. Estimating the carbon stock mangrove value using Sentinel-1 imagery produced 2,126 tons of C with R² 0.11. Meanwhile, Sentinel-2 produces an estimated carbon value of 2,025 tons C with an R² of 0.22. The estimation model using Sentinel-2 shows a better evaluation value with a Root Mean Squared Error (RMSE) of 0.89 and a Mean Absolute Error (MAE) of 0.75. The IRECI vegetation index is the most important variable in estimating carbon stocks. The results of the mapping accuracy of the Sentinel-1 model show a value of 34.73% and Sentinel-2 35.03%.Keywords: Mangrove, Carbon, Sentinel-1, Sentinel-2, Random Forest
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信