n维刚体旋转运动的哈默尔系数

J. Hurtado, A. Sinclair
{"title":"n维刚体旋转运动的哈默尔系数","authors":"J. Hurtado, A. Sinclair","doi":"10.1098/rspa.2004.1320","DOIUrl":null,"url":null,"abstract":"Many of the kinematic and dynamic concepts relating to rotational motion have been generalized for N–dimensional rigid bodies. In this paper a new derivation of the generalized Euler equations is presented. The development herein of the N–dimensional rotational equations of motion requires the introduction of a new symbol, which is a numerical relative tensor, to relate the elements of an N Ö N skew–symmetric matrix to a vector form. This symbol allows the Hamel coefficients associated with general N–dimensional rotations to be computed. Using these coefficients, Lagrange's equations are written in terms of the angular–velocity components of an N–dimensional rigid body. The new derivation provides a convenient vector form of the equations, allows the study of systems with forcing functions, and allows for the sensitivity of the kinetic energy to the generalized coordinates.","PeriodicalId":20722,"journal":{"name":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","volume":"39 1","pages":"3613 - 3630"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Hamel coefficients for the rotational motion of an N–dimensional rigid body\",\"authors\":\"J. Hurtado, A. Sinclair\",\"doi\":\"10.1098/rspa.2004.1320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the kinematic and dynamic concepts relating to rotational motion have been generalized for N–dimensional rigid bodies. In this paper a new derivation of the generalized Euler equations is presented. The development herein of the N–dimensional rotational equations of motion requires the introduction of a new symbol, which is a numerical relative tensor, to relate the elements of an N Ö N skew–symmetric matrix to a vector form. This symbol allows the Hamel coefficients associated with general N–dimensional rotations to be computed. Using these coefficients, Lagrange's equations are written in terms of the angular–velocity components of an N–dimensional rigid body. The new derivation provides a convenient vector form of the equations, allows the study of systems with forcing functions, and allows for the sensitivity of the kinetic energy to the generalized coordinates.\",\"PeriodicalId\":20722,\"journal\":{\"name\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"volume\":\"39 1\",\"pages\":\"3613 - 3630\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2004.1320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2004.1320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

许多与旋转运动有关的运动学和动力学概念已经推广到n维刚体。本文给出了广义欧拉方程的一种新的推导方法。这里的N维旋转运动方程的发展需要引入一个新的符号,它是一个数值相对张量,将N Ã - N偏对称矩阵的元素与向量形式联系起来。这个符号允许计算与一般n维旋转相关的哈默尔系数。利用这些系数,拉格朗日方程可以用n维刚体的角速度分量来表示。新的推导提供了一种方便的方程矢量形式,允许研究具有强迫函数的系统,并且允许动能对广义坐标的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hamel coefficients for the rotational motion of an N–dimensional rigid body
Many of the kinematic and dynamic concepts relating to rotational motion have been generalized for N–dimensional rigid bodies. In this paper a new derivation of the generalized Euler equations is presented. The development herein of the N–dimensional rotational equations of motion requires the introduction of a new symbol, which is a numerical relative tensor, to relate the elements of an N Ö N skew–symmetric matrix to a vector form. This symbol allows the Hamel coefficients associated with general N–dimensional rotations to be computed. Using these coefficients, Lagrange's equations are written in terms of the angular–velocity components of an N–dimensional rigid body. The new derivation provides a convenient vector form of the equations, allows the study of systems with forcing functions, and allows for the sensitivity of the kinetic energy to the generalized coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Proceedings A publishes articles across the chemical, computational, Earth, engineering, mathematical, and physical sciences. The articles published are high-quality, original, fundamental articles of interest to a wide range of scientists, and often have long citation half-lives. As well as established disciplines, we encourage emerging and interdisciplinary areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信