图的几个极值位置问题

IF 0.6 3区 数学 Q3 MATHEMATICS
J. Tuite, Elias John Thomas, Ullas Chandran S.V.
{"title":"图的几个极值位置问题","authors":"J. Tuite, Elias John Thomas, Ullas Chandran S.V.","doi":"10.26493/1855-3974.3094.bc6","DOIUrl":null,"url":null,"abstract":"The general position number of a graph $G$ is the size of the largest set of vertices $S$ such that no geodesic of $G$ contains more than two elements of $S$. The monophonic position number of a graph is defined similarly, but with `induced path' in place of `geodesic'. In this paper we investigate some extremal problems for these parameters. Firstly we discuss the problem of the smallest possible order of a graph with given general and monophonic position numbers, with applications to a realisation result. We then solve a Turan problem for the size of graphs with given order and position numbers and characterise the possible diameters of graphs with given order and monophonic position number. Finally we classify the graphs with given order and diameter and largest possible general position number.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On some extremal position problems for graphs\",\"authors\":\"J. Tuite, Elias John Thomas, Ullas Chandran S.V.\",\"doi\":\"10.26493/1855-3974.3094.bc6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The general position number of a graph $G$ is the size of the largest set of vertices $S$ such that no geodesic of $G$ contains more than two elements of $S$. The monophonic position number of a graph is defined similarly, but with `induced path' in place of `geodesic'. In this paper we investigate some extremal problems for these parameters. Firstly we discuss the problem of the smallest possible order of a graph with given general and monophonic position numbers, with applications to a realisation result. We then solve a Turan problem for the size of graphs with given order and position numbers and characterise the possible diameters of graphs with given order and monophonic position number. Finally we classify the graphs with given order and diameter and largest possible general position number.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.3094.bc6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.3094.bc6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

图$G$的一般位置号是最大顶点集$S$的大小,使得$G$的测地线不包含$S$的两个以上元素。图的单音位置数的定义类似,但用“诱导路径”代替“测地线”。本文研究了这些参数的一些极值问题。首先讨论了给定一般位置数和单音位置数的图的最小可能阶数问题,并应用于一个实现结果。然后,我们解决了具有给定阶数和位置数的图的大小的Turan问题,并刻画了具有给定阶数和单音位置数的图的可能直径。最后对给定阶数、直径和最大可能一般位置数的图进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some extremal position problems for graphs
The general position number of a graph $G$ is the size of the largest set of vertices $S$ such that no geodesic of $G$ contains more than two elements of $S$. The monophonic position number of a graph is defined similarly, but with `induced path' in place of `geodesic'. In this paper we investigate some extremal problems for these parameters. Firstly we discuss the problem of the smallest possible order of a graph with given general and monophonic position numbers, with applications to a realisation result. We then solve a Turan problem for the size of graphs with given order and position numbers and characterise the possible diameters of graphs with given order and monophonic position number. Finally we classify the graphs with given order and diameter and largest possible general position number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信