{"title":"DL-PCN:用于动作识别的差分学习和并行卷积网络","authors":"Qinyang Zeng, Ronghao Dang, Qin Fang, Chengju Liu, Qi Chen","doi":"10.3233/aic-220268","DOIUrl":null,"url":null,"abstract":"Graph Convolution Network (GCN) algorithms have greatly improved the accuracy of skeleton-based human action recognition. GCN can utilize the spatial information between skeletal joints in subsequent frames better than other deep learning algorithms, which is beneficial for achieving high accuracy. However, the traditional GCN algorithms consume lots of computation for the stack of multiple primary GCN layers. Aiming at solving the problem, we introduce a lightweight network, a Differential Learning and Parallel Convolutional Networks (DL-PCN), whose key modules are Differential Learning (DLM) and the Parallel Convolutional Network (PCN). DLM features a feedforward connection, which carries the error information of GCN modules with the same structure, where GCN and CNN modules directly extract the original information from the input data, making the spatiotemporal information extracted by these modules more complete than that of GCN and CNN tandem structure. PCN comprises GCN and Convolution Neural Network (CNN) in parallel. Our network achieves comparable performance on the NTU RGB+D 60 dataset, the NTU RGB+D 120 dataset and the Northwestern-UCLA dataset while considering both accuracy and calculation parameters.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"29 1","pages":"235-249"},"PeriodicalIF":1.4000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DL-PCN: Differential learning and parallel convolutional network for action recognition\",\"authors\":\"Qinyang Zeng, Ronghao Dang, Qin Fang, Chengju Liu, Qi Chen\",\"doi\":\"10.3233/aic-220268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph Convolution Network (GCN) algorithms have greatly improved the accuracy of skeleton-based human action recognition. GCN can utilize the spatial information between skeletal joints in subsequent frames better than other deep learning algorithms, which is beneficial for achieving high accuracy. However, the traditional GCN algorithms consume lots of computation for the stack of multiple primary GCN layers. Aiming at solving the problem, we introduce a lightweight network, a Differential Learning and Parallel Convolutional Networks (DL-PCN), whose key modules are Differential Learning (DLM) and the Parallel Convolutional Network (PCN). DLM features a feedforward connection, which carries the error information of GCN modules with the same structure, where GCN and CNN modules directly extract the original information from the input data, making the spatiotemporal information extracted by these modules more complete than that of GCN and CNN tandem structure. PCN comprises GCN and Convolution Neural Network (CNN) in parallel. Our network achieves comparable performance on the NTU RGB+D 60 dataset, the NTU RGB+D 120 dataset and the Northwestern-UCLA dataset while considering both accuracy and calculation parameters.\",\"PeriodicalId\":50835,\"journal\":{\"name\":\"AI Communications\",\"volume\":\"29 1\",\"pages\":\"235-249\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/aic-220268\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-220268","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DL-PCN: Differential learning and parallel convolutional network for action recognition
Graph Convolution Network (GCN) algorithms have greatly improved the accuracy of skeleton-based human action recognition. GCN can utilize the spatial information between skeletal joints in subsequent frames better than other deep learning algorithms, which is beneficial for achieving high accuracy. However, the traditional GCN algorithms consume lots of computation for the stack of multiple primary GCN layers. Aiming at solving the problem, we introduce a lightweight network, a Differential Learning and Parallel Convolutional Networks (DL-PCN), whose key modules are Differential Learning (DLM) and the Parallel Convolutional Network (PCN). DLM features a feedforward connection, which carries the error information of GCN modules with the same structure, where GCN and CNN modules directly extract the original information from the input data, making the spatiotemporal information extracted by these modules more complete than that of GCN and CNN tandem structure. PCN comprises GCN and Convolution Neural Network (CNN) in parallel. Our network achieves comparable performance on the NTU RGB+D 60 dataset, the NTU RGB+D 120 dataset and the Northwestern-UCLA dataset while considering both accuracy and calculation parameters.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.