{"title":"Pri3Ge(GePh2)4GePri3在溶液中的吸光度和发射特性研究以及固态和带隙测定","authors":"F. A. Shumaker, C. S. Weinert","doi":"10.3233/mgc-220100","DOIUrl":null,"url":null,"abstract":"The hexagermane Pri3Ge(GePh2)4GePr i3 (1) can adopt four different conformations by rotations about its germanium –germanium single bonds that differ in energy across an energy range of 31.63 kJ/mol, with the trans-coplanar arrangement having the lowest energy. Conformational changes can occur among these four structures resulting in the observation of thermochromic absorbance spectra both in solution and in the solid state. Bathochromic shifts of 5 nm and 15 nm were observed in solution and in the solid state with increasing temperature. Compound 1 is also luminescent both in solution and in the solid state. The solution emission spectra are solvent dependent and the solid state emission maxima were shown to be temperature dependent. When 1 is excited at 300 nm in the solid state at 80 K its emission spectrum contains a broad emission peak in the visible region and this emission can be observed with the naked eye. The indirect band gap of 1 was determined to be 3.25 eV, which is consistent with investigations on other related oligogermane systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorbance and emission studies in solution and the solid state and band gap determination of Pri3Ge(GePh2)4GePri3\",\"authors\":\"F. A. Shumaker, C. S. Weinert\",\"doi\":\"10.3233/mgc-220100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hexagermane Pri3Ge(GePh2)4GePr i3 (1) can adopt four different conformations by rotations about its germanium –germanium single bonds that differ in energy across an energy range of 31.63 kJ/mol, with the trans-coplanar arrangement having the lowest energy. Conformational changes can occur among these four structures resulting in the observation of thermochromic absorbance spectra both in solution and in the solid state. Bathochromic shifts of 5 nm and 15 nm were observed in solution and in the solid state with increasing temperature. Compound 1 is also luminescent both in solution and in the solid state. The solution emission spectra are solvent dependent and the solid state emission maxima were shown to be temperature dependent. When 1 is excited at 300 nm in the solid state at 80 K its emission spectrum contains a broad emission peak in the visible region and this emission can be observed with the naked eye. The indirect band gap of 1 was determined to be 3.25 eV, which is consistent with investigations on other related oligogermane systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3233/mgc-220100\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220100","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Absorbance and emission studies in solution and the solid state and band gap determination of Pri3Ge(GePh2)4GePri3
The hexagermane Pri3Ge(GePh2)4GePr i3 (1) can adopt four different conformations by rotations about its germanium –germanium single bonds that differ in energy across an energy range of 31.63 kJ/mol, with the trans-coplanar arrangement having the lowest energy. Conformational changes can occur among these four structures resulting in the observation of thermochromic absorbance spectra both in solution and in the solid state. Bathochromic shifts of 5 nm and 15 nm were observed in solution and in the solid state with increasing temperature. Compound 1 is also luminescent both in solution and in the solid state. The solution emission spectra are solvent dependent and the solid state emission maxima were shown to be temperature dependent. When 1 is excited at 300 nm in the solid state at 80 K its emission spectrum contains a broad emission peak in the visible region and this emission can be observed with the naked eye. The indirect band gap of 1 was determined to be 3.25 eV, which is consistent with investigations on other related oligogermane systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.