{"title":"Korteweg-De Vries-Burger方程与Jeffreys的风波相互作用:有限时间内类孤子解的爆破与破裂","authors":"M. Manna, A. Latifi","doi":"10.3390/fluids8080231","DOIUrl":null,"url":null,"abstract":"In this study, the evolution of surface water solitary waves under the action of Jeffreys’ wind–wave amplification mechanism in shallow water is analytically investigated. The analytic approach is essential for numerical investigations due to the scale of energy dissipation near coasts. Although many works have been conducted based on the Jeffreys’ approach, only some studies have been carried out on finite depth. We show that nonlinearity, dispersion, and anti-dissipation are the dominating phenomena, obeying an anti-diffusive and fully nonlinear Serre–Green–Naghdi (SGN) equation. Applying an appropriate perturbation method, the current research yields a Korteweg–de Vries–Burger-type equation (KdV-B), combining weak nonlinearity, dispersion, and anti-dissipation. This derivation is novel. We show that the continuous transfer of energy from wind to water results in the growth over time of the KdV-B soliton’s amplitude, velocity, acceleration, and energy, while its effective wavelength decreases. This phenomenon differs from the classical results of Jeffreys’ approach and is due to finite depth. In this study, it is shown that expansion and breaking occur in finite time. These times are calculated and expressed with respect to soliton- and wind-appropriateparameters and values. The obtained values are measurable in experimental facilities. A detailed analysis of the breaking time is conducted with regard to various criteria. By comparing these times to the experimental results, the validity of these criteria are examined.","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"28 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korteweg–De Vries–Burger Equation with Jeffreys’ Wind–Wave Interaction: Blow-Up and Breaking of Soliton-like Solutions in Finite Time\",\"authors\":\"M. Manna, A. Latifi\",\"doi\":\"10.3390/fluids8080231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the evolution of surface water solitary waves under the action of Jeffreys’ wind–wave amplification mechanism in shallow water is analytically investigated. The analytic approach is essential for numerical investigations due to the scale of energy dissipation near coasts. Although many works have been conducted based on the Jeffreys’ approach, only some studies have been carried out on finite depth. We show that nonlinearity, dispersion, and anti-dissipation are the dominating phenomena, obeying an anti-diffusive and fully nonlinear Serre–Green–Naghdi (SGN) equation. Applying an appropriate perturbation method, the current research yields a Korteweg–de Vries–Burger-type equation (KdV-B), combining weak nonlinearity, dispersion, and anti-dissipation. This derivation is novel. We show that the continuous transfer of energy from wind to water results in the growth over time of the KdV-B soliton’s amplitude, velocity, acceleration, and energy, while its effective wavelength decreases. This phenomenon differs from the classical results of Jeffreys’ approach and is due to finite depth. In this study, it is shown that expansion and breaking occur in finite time. These times are calculated and expressed with respect to soliton- and wind-appropriateparameters and values. The obtained values are measurable in experimental facilities. A detailed analysis of the breaking time is conducted with regard to various criteria. By comparing these times to the experimental results, the validity of these criteria are examined.\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids8080231\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/fluids8080231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Korteweg–De Vries–Burger Equation with Jeffreys’ Wind–Wave Interaction: Blow-Up and Breaking of Soliton-like Solutions in Finite Time
In this study, the evolution of surface water solitary waves under the action of Jeffreys’ wind–wave amplification mechanism in shallow water is analytically investigated. The analytic approach is essential for numerical investigations due to the scale of energy dissipation near coasts. Although many works have been conducted based on the Jeffreys’ approach, only some studies have been carried out on finite depth. We show that nonlinearity, dispersion, and anti-dissipation are the dominating phenomena, obeying an anti-diffusive and fully nonlinear Serre–Green–Naghdi (SGN) equation. Applying an appropriate perturbation method, the current research yields a Korteweg–de Vries–Burger-type equation (KdV-B), combining weak nonlinearity, dispersion, and anti-dissipation. This derivation is novel. We show that the continuous transfer of energy from wind to water results in the growth over time of the KdV-B soliton’s amplitude, velocity, acceleration, and energy, while its effective wavelength decreases. This phenomenon differs from the classical results of Jeffreys’ approach and is due to finite depth. In this study, it is shown that expansion and breaking occur in finite time. These times are calculated and expressed with respect to soliton- and wind-appropriateparameters and values. The obtained values are measurable in experimental facilities. A detailed analysis of the breaking time is conducted with regard to various criteria. By comparing these times to the experimental results, the validity of these criteria are examined.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.