ξ(as)-QSO类的分类与动力学

IF 0.5 Q4 MULTIDISCIPLINARY SCIENCES
Hamza Abd El-Qader, A. T. A. Ghani, I. Qaralleh
{"title":"ξ(as)-QSO类的分类与动力学","authors":"Hamza Abd El-Qader, A. T. A. Ghani, I. Qaralleh","doi":"10.5614/j.math.fund.sci.2020.52.2.2","DOIUrl":null,"url":null,"abstract":"The current study provides a new class of ξ(as)-QSO defined on 2D simplex and classifies it into 18 non-conjugate (isomorphic) classes. This classification is based on their conjugacy and the remuneration of coordinates. The current study also examines the limiting points associated with the behavior of trajectories for four classes defined on 2D simplex.","PeriodicalId":16255,"journal":{"name":"Journal of Mathematical and Fundamental Sciences","volume":"12 1","pages":"143-173"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification and Dynamics of Class of ξ(as)-QSO\",\"authors\":\"Hamza Abd El-Qader, A. T. A. Ghani, I. Qaralleh\",\"doi\":\"10.5614/j.math.fund.sci.2020.52.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study provides a new class of ξ(as)-QSO defined on 2D simplex and classifies it into 18 non-conjugate (isomorphic) classes. This classification is based on their conjugacy and the remuneration of coordinates. The current study also examines the limiting points associated with the behavior of trajectories for four classes defined on 2D simplex.\",\"PeriodicalId\":16255,\"journal\":{\"name\":\"Journal of Mathematical and Fundamental Sciences\",\"volume\":\"12 1\",\"pages\":\"143-173\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical and Fundamental Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/j.math.fund.sci.2020.52.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Fundamental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.math.fund.sci.2020.52.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

本文在二维单纯形上定义了一类新的ξ(as)-QSO,并将其划分为18个非共轭(同构)类。这种分类是基于它们的共轭性和坐标的报酬。目前的研究还检查了与在二维单纯形上定义的四类轨迹行为相关的极限点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and Dynamics of Class of ξ(as)-QSO
The current study provides a new class of ξ(as)-QSO defined on 2D simplex and classifies it into 18 non-conjugate (isomorphic) classes. This classification is based on their conjugacy and the remuneration of coordinates. The current study also examines the limiting points associated with the behavior of trajectories for four classes defined on 2D simplex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Journal of Mathematical and Fundamental Sciences welcomes full research articles in the area of Mathematics and Natural Sciences from the following subject areas: Astronomy, Chemistry, Earth Sciences (Geodesy, Geology, Geophysics, Oceanography, Meteorology), Life Sciences (Agriculture, Biochemistry, Biology, Health Sciences, Medical Sciences, Pharmacy), Mathematics, Physics, and Statistics. New submissions of mathematics articles starting in January 2020 are required to focus on applied mathematics with real relevance to the field of natural sciences. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信