{"title":"具有对象间超关系的基于几何的布局生成","authors":"Shao-Kui Zhang , Wei-Yu Xie , Song-Hai Zhang","doi":"10.1016/j.gmod.2021.101104","DOIUrl":null,"url":null,"abstract":"<div><p><span>Recent studies show increasing demands and interests in automatic layout generation, while there is still much room for improving the plausibility<span> and robustness. In this paper, we present a data-driven layout generation framework without model formulation and loss term optimization. We achieve and organize priors directly based on samples from datasets instead of sampling probabilistic distributions. Therefore, our method enables expressing relations among three or more objects that are hard to be mathematically modeled. Subsequently, a non-learning geometric algorithm is proposed to arrange objects considering constraints such as positions of walls and windows. Experiments show that the proposed method outperforms the state-of-the-art and our generated layouts are competitive to those designed by professionals.</span></span><span><sup>1</sup></span></p></div>","PeriodicalId":55083,"journal":{"name":"Graphical Models","volume":"116 ","pages":"Article 101104"},"PeriodicalIF":2.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gmod.2021.101104","citationCount":"8","resultStr":"{\"title\":\"Geometry-Based Layout Generation with Hyper-Relations AMONG Objects\",\"authors\":\"Shao-Kui Zhang , Wei-Yu Xie , Song-Hai Zhang\",\"doi\":\"10.1016/j.gmod.2021.101104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Recent studies show increasing demands and interests in automatic layout generation, while there is still much room for improving the plausibility<span> and robustness. In this paper, we present a data-driven layout generation framework without model formulation and loss term optimization. We achieve and organize priors directly based on samples from datasets instead of sampling probabilistic distributions. Therefore, our method enables expressing relations among three or more objects that are hard to be mathematically modeled. Subsequently, a non-learning geometric algorithm is proposed to arrange objects considering constraints such as positions of walls and windows. Experiments show that the proposed method outperforms the state-of-the-art and our generated layouts are competitive to those designed by professionals.</span></span><span><sup>1</sup></span></p></div>\",\"PeriodicalId\":55083,\"journal\":{\"name\":\"Graphical Models\",\"volume\":\"116 \",\"pages\":\"Article 101104\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.gmod.2021.101104\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphical Models\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1524070321000096\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphical Models","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1524070321000096","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Geometry-Based Layout Generation with Hyper-Relations AMONG Objects
Recent studies show increasing demands and interests in automatic layout generation, while there is still much room for improving the plausibility and robustness. In this paper, we present a data-driven layout generation framework without model formulation and loss term optimization. We achieve and organize priors directly based on samples from datasets instead of sampling probabilistic distributions. Therefore, our method enables expressing relations among three or more objects that are hard to be mathematically modeled. Subsequently, a non-learning geometric algorithm is proposed to arrange objects considering constraints such as positions of walls and windows. Experiments show that the proposed method outperforms the state-of-the-art and our generated layouts are competitive to those designed by professionals.1
期刊介绍:
Graphical Models is recognized internationally as a highly rated, top tier journal and is focused on the creation, geometric processing, animation, and visualization of graphical models and on their applications in engineering, science, culture, and entertainment. GMOD provides its readers with thoroughly reviewed and carefully selected papers that disseminate exciting innovations, that teach rigorous theoretical foundations, that propose robust and efficient solutions, or that describe ambitious systems or applications in a variety of topics.
We invite papers in five categories: research (contributions of novel theoretical or practical approaches or solutions), survey (opinionated views of the state-of-the-art and challenges in a specific topic), system (the architecture and implementation details of an innovative architecture for a complete system that supports model/animation design, acquisition, analysis, visualization?), application (description of a novel application of know techniques and evaluation of its impact), or lecture (an elegant and inspiring perspective on previously published results that clarifies them and teaches them in a new way).
GMOD offers its authors an accelerated review, feedback from experts in the field, immediate online publication of accepted papers, no restriction on color and length (when justified by the content) in the online version, and a broad promotion of published papers. A prestigious group of editors selected from among the premier international researchers in their fields oversees the review process.