{"title":"促进甲基养生物生长的新型植物的生物多样性和生物技术应用","authors":"N. Yadav, Ajar Nath Yadav","doi":"10.15406/JABB.2018.05.00162","DOIUrl":null,"url":null,"abstract":"The different class α, β and γ–proteobacteria of methylotrophic bacteria communities have been reported worldwide. The class α-proteobacteria has been reported as most dominant followed by β–proteobacteria. The novel methylotrophic microbes have been isolated and characterized from different habitats worldwide including Methylocella silvestris BL2T , Methylocella palustris KT, Methyloferula stellata AR4T and Methylocapsa acidiphila B2T from acidic soil;22–25 Methylobacterium tarhaniae N4211T from arid soil;26 Methylobacterium iners 5317S-33T and Methylobacterium aerolatum 5413S-11T from air sample;27 Methylobacterium adhaesivum AR27T and Methylobacterium isbiliense AR24T from drinking water;28,29 Methylobacterium brachiatum B0021T, Methylobacterium gregans 002-074T, Methylobacterium komagatae 002-079T, Methylobacterium persicinum 002-165T and Methylobacterium tardum RB677T from freshwater sample;30 Methylobacterium organophilum XX, Methylotenera versatilis 301T and Methylotenera mobilis JLW8T from lakes;31–33 Methylobacterium brachythecii 99bT, Methylobacterium cerastii C44, Methylobacterium gnaphalii 23eT, Methylobacterium gossipiicola Gh-105T, Methylobacterium haplocladii 87eT, Methylobacterium oxalidis 35aT, Methylobacterium phyllosphaerae B27T, Methylobacterium phyllostachyos BL47T, Methylobacterium platani PMB02T, Methylobacterium pseudosasicola BL36T, Methylobacterium thuringiense C34T, Methylobacterium trifolii TA73T, from leaf surface of diverse plants;34–42 Methylobacterium aminovorans TH-1, Methylobacterium goesingense iEII3, Methylobacterium soli YIM 48816T, Methylobacterium suomiense, F20T, Methylobacterium thiocyanatum, Methylobacterium variabile GR3T, Methylopila capsulata IM1T, and Methylopila helvetica VKMB-189 from soil samples43–50","PeriodicalId":15033,"journal":{"name":"Journal of Applied Biotechnology & Bioengineering","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs\",\"authors\":\"N. Yadav, Ajar Nath Yadav\",\"doi\":\"10.15406/JABB.2018.05.00162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The different class α, β and γ–proteobacteria of methylotrophic bacteria communities have been reported worldwide. The class α-proteobacteria has been reported as most dominant followed by β–proteobacteria. The novel methylotrophic microbes have been isolated and characterized from different habitats worldwide including Methylocella silvestris BL2T , Methylocella palustris KT, Methyloferula stellata AR4T and Methylocapsa acidiphila B2T from acidic soil;22–25 Methylobacterium tarhaniae N4211T from arid soil;26 Methylobacterium iners 5317S-33T and Methylobacterium aerolatum 5413S-11T from air sample;27 Methylobacterium adhaesivum AR27T and Methylobacterium isbiliense AR24T from drinking water;28,29 Methylobacterium brachiatum B0021T, Methylobacterium gregans 002-074T, Methylobacterium komagatae 002-079T, Methylobacterium persicinum 002-165T and Methylobacterium tardum RB677T from freshwater sample;30 Methylobacterium organophilum XX, Methylotenera versatilis 301T and Methylotenera mobilis JLW8T from lakes;31–33 Methylobacterium brachythecii 99bT, Methylobacterium cerastii C44, Methylobacterium gnaphalii 23eT, Methylobacterium gossipiicola Gh-105T, Methylobacterium haplocladii 87eT, Methylobacterium oxalidis 35aT, Methylobacterium phyllosphaerae B27T, Methylobacterium phyllostachyos BL47T, Methylobacterium platani PMB02T, Methylobacterium pseudosasicola BL36T, Methylobacterium thuringiense C34T, Methylobacterium trifolii TA73T, from leaf surface of diverse plants;34–42 Methylobacterium aminovorans TH-1, Methylobacterium goesingense iEII3, Methylobacterium soli YIM 48816T, Methylobacterium suomiense, F20T, Methylobacterium thiocyanatum, Methylobacterium variabile GR3T, Methylopila capsulata IM1T, and Methylopila helvetica VKMB-189 from soil samples43–50\",\"PeriodicalId\":15033,\"journal\":{\"name\":\"Journal of Applied Biotechnology & Bioengineering\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biotechnology & Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/JABB.2018.05.00162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biotechnology & Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/JABB.2018.05.00162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biodiversity and biotechnological applications of novel plant growth promoting methylotrophs
The different class α, β and γ–proteobacteria of methylotrophic bacteria communities have been reported worldwide. The class α-proteobacteria has been reported as most dominant followed by β–proteobacteria. The novel methylotrophic microbes have been isolated and characterized from different habitats worldwide including Methylocella silvestris BL2T , Methylocella palustris KT, Methyloferula stellata AR4T and Methylocapsa acidiphila B2T from acidic soil;22–25 Methylobacterium tarhaniae N4211T from arid soil;26 Methylobacterium iners 5317S-33T and Methylobacterium aerolatum 5413S-11T from air sample;27 Methylobacterium adhaesivum AR27T and Methylobacterium isbiliense AR24T from drinking water;28,29 Methylobacterium brachiatum B0021T, Methylobacterium gregans 002-074T, Methylobacterium komagatae 002-079T, Methylobacterium persicinum 002-165T and Methylobacterium tardum RB677T from freshwater sample;30 Methylobacterium organophilum XX, Methylotenera versatilis 301T and Methylotenera mobilis JLW8T from lakes;31–33 Methylobacterium brachythecii 99bT, Methylobacterium cerastii C44, Methylobacterium gnaphalii 23eT, Methylobacterium gossipiicola Gh-105T, Methylobacterium haplocladii 87eT, Methylobacterium oxalidis 35aT, Methylobacterium phyllosphaerae B27T, Methylobacterium phyllostachyos BL47T, Methylobacterium platani PMB02T, Methylobacterium pseudosasicola BL36T, Methylobacterium thuringiense C34T, Methylobacterium trifolii TA73T, from leaf surface of diverse plants;34–42 Methylobacterium aminovorans TH-1, Methylobacterium goesingense iEII3, Methylobacterium soli YIM 48816T, Methylobacterium suomiense, F20T, Methylobacterium thiocyanatum, Methylobacterium variabile GR3T, Methylopila capsulata IM1T, and Methylopila helvetica VKMB-189 from soil samples43–50