关于Whitehead的切顶点引理

Pub Date : 2022-05-12 DOI:10.1515/jgth-2022-0089
Rylee Alanza Lyman
{"title":"关于Whitehead的切顶点引理","authors":"Rylee Alanza Lyman","doi":"10.1515/jgth-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract One version of Whitehead’s famous cut vertex lemma says that if an element of a free group is part of a free basis, then a certain graph associated to its conjugacy class that we call the star graph is either disconnected or has a cut vertex. We state and prove a version of this lemma for conjugacy classes of elements and convex-cocompact subgroups of groups acting cocompactly on trees with finitely generated edge stabilizers.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Whitehead’s cut vertex lemma\",\"authors\":\"Rylee Alanza Lyman\",\"doi\":\"10.1515/jgth-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract One version of Whitehead’s famous cut vertex lemma says that if an element of a free group is part of a free basis, then a certain graph associated to its conjugacy class that we call the star graph is either disconnected or has a cut vertex. We state and prove a version of this lemma for conjugacy classes of elements and convex-cocompact subgroups of groups acting cocompactly on trees with finitely generated edge stabilizers.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Whitehead著名的切顶点引理的一个版本说,如果自由群中的一个元素是自由基的一部分,那么与它的共轭类相关联的某个图,我们称之为星图,要么是不连通的,要么是有切顶点的。对于紧作用于具有有限生成边稳定器的树上的元的共轭类和群的凸紧子群,我们陈述并证明了这个引理的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Whitehead’s cut vertex lemma
Abstract One version of Whitehead’s famous cut vertex lemma says that if an element of a free group is part of a free basis, then a certain graph associated to its conjugacy class that we call the star graph is either disconnected or has a cut vertex. We state and prove a version of this lemma for conjugacy classes of elements and convex-cocompact subgroups of groups acting cocompactly on trees with finitely generated edge stabilizers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信