{"title":"3种不同木霉防治小麦幼苗条锈病的研究","authors":"Amira M. I. Mourad, Andreas Börner, S. Esmail","doi":"10.3390/agriculture13091755","DOIUrl":null,"url":null,"abstract":"Wheat stripe rust (WSR) caused by Puccinia striiformis F. tritici Erikss. (Pst) is one of the serious diseases that affect wheat planting areas around the world. Many efforts have been made to control such a serious disease including using fungicides and breeding highly resistant genotypes. However, due to Pst’s ability to produce new races that overcome these fungicides and break the resistance in the highly resistant genotypes, looking for other effective ways to restrict this disease is urgently required. One of the highly effective ways of controlling crop diseases is using biological control. In this study, the efficiency of three different Trichoderma species (Trichoderma asperellum T34, Trichoderma harzianum (TH), and Trichoderma verdinium (TV)) was tested in a set of 34 wheat genotypes at the seedling stage. The evaluation was conducted in two experiments with two different temperature regimes. In each experiment, four treatments were applied, namely, control, T34, TV, and TH. High genetic variation was found among all genotypes in each experiment and under each Trichoderma treatment. Notably, the symptoms of WSR were affected by temperature under all treatments except T34, which had a stable performance in the two experiments. The 34 studied genotypes were highly diverse, related to ten different countries, and consisted of durum and bread wheat. Out of the three studied Trichoderma species, T34 was able to improve WSR resistance in all the studied genotypes suggesting its effectiveness in inducing the resistance and producing a priming response in different wheat genetic backgrounds. The results of this study provided very useful information on the effectiveness of Trichoderma spp. in controlling WSR.","PeriodicalId":48587,"journal":{"name":"Agriculture-Basel","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Alleviation of Stripe Rust Disease in Wheat Seedlings Using Three Different Species of Trichoderma spp.\",\"authors\":\"Amira M. I. Mourad, Andreas Börner, S. Esmail\",\"doi\":\"10.3390/agriculture13091755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wheat stripe rust (WSR) caused by Puccinia striiformis F. tritici Erikss. (Pst) is one of the serious diseases that affect wheat planting areas around the world. Many efforts have been made to control such a serious disease including using fungicides and breeding highly resistant genotypes. However, due to Pst’s ability to produce new races that overcome these fungicides and break the resistance in the highly resistant genotypes, looking for other effective ways to restrict this disease is urgently required. One of the highly effective ways of controlling crop diseases is using biological control. In this study, the efficiency of three different Trichoderma species (Trichoderma asperellum T34, Trichoderma harzianum (TH), and Trichoderma verdinium (TV)) was tested in a set of 34 wheat genotypes at the seedling stage. The evaluation was conducted in two experiments with two different temperature regimes. In each experiment, four treatments were applied, namely, control, T34, TV, and TH. High genetic variation was found among all genotypes in each experiment and under each Trichoderma treatment. Notably, the symptoms of WSR were affected by temperature under all treatments except T34, which had a stable performance in the two experiments. The 34 studied genotypes were highly diverse, related to ten different countries, and consisted of durum and bread wheat. Out of the three studied Trichoderma species, T34 was able to improve WSR resistance in all the studied genotypes suggesting its effectiveness in inducing the resistance and producing a priming response in different wheat genetic backgrounds. The results of this study provided very useful information on the effectiveness of Trichoderma spp. in controlling WSR.\",\"PeriodicalId\":48587,\"journal\":{\"name\":\"Agriculture-Basel\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture13091755\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agriculture13091755","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Alleviation of Stripe Rust Disease in Wheat Seedlings Using Three Different Species of Trichoderma spp.
Wheat stripe rust (WSR) caused by Puccinia striiformis F. tritici Erikss. (Pst) is one of the serious diseases that affect wheat planting areas around the world. Many efforts have been made to control such a serious disease including using fungicides and breeding highly resistant genotypes. However, due to Pst’s ability to produce new races that overcome these fungicides and break the resistance in the highly resistant genotypes, looking for other effective ways to restrict this disease is urgently required. One of the highly effective ways of controlling crop diseases is using biological control. In this study, the efficiency of three different Trichoderma species (Trichoderma asperellum T34, Trichoderma harzianum (TH), and Trichoderma verdinium (TV)) was tested in a set of 34 wheat genotypes at the seedling stage. The evaluation was conducted in two experiments with two different temperature regimes. In each experiment, four treatments were applied, namely, control, T34, TV, and TH. High genetic variation was found among all genotypes in each experiment and under each Trichoderma treatment. Notably, the symptoms of WSR were affected by temperature under all treatments except T34, which had a stable performance in the two experiments. The 34 studied genotypes were highly diverse, related to ten different countries, and consisted of durum and bread wheat. Out of the three studied Trichoderma species, T34 was able to improve WSR resistance in all the studied genotypes suggesting its effectiveness in inducing the resistance and producing a priming response in different wheat genetic backgrounds. The results of this study provided very useful information on the effectiveness of Trichoderma spp. in controlling WSR.
期刊介绍:
Agriculture (ISSN 2077-0472) is an international and cross-disciplinary scholarly and scientific open access journal on the science of cultivating the soil, growing, harvesting crops, and raising livestock. We will aim to look at production, processing, marketing and use of foods, fibers, plants and animals. The journal Agriculturewill publish reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.