银与铟合金化消除银线焊中有害的金属间化合物相

Jiaqi Wu, Chin C. Lee
{"title":"银与铟合金化消除银线焊中有害的金属间化合物相","authors":"Jiaqi Wu, Chin C. Lee","doi":"10.1109/ECTC.2018.00335","DOIUrl":null,"url":null,"abstract":"Recently, silver (Ag) alloys have been emerging as bonding wire materials for commercialized electronic products because of moderate hardness, high ductility, best thermal and electrical conductivities among metals and low growth rate of intermetallic compounds (IMCs). Many compositional designs such as Ag-Palladium (Pd), Ag-Gold (Au)-Pd have been demonstrated and relevant reliability issues on aluminum (Al) pad have been studied. Ag2Al and Ag3Al have been identified as the interfacial IMCs. However, the softness, facture toughness and corrosion resistance of Ag2Al are much better than those of Ag3Al. Therefore, Ag3Al and its interfaces between adjacent phases become weak part in terms of long term reliability. In this paper, an approach to eliminate Ag3Al phase is proposed by alloying indium (In) into Ag. Comprehensive studies are preformed after the inter-diffusion between Ag and Al. Focus ion beam (FIB) is utilized to create clean cross sections and sample preparation. Scanning electron microscopy (SEM) by using in-beam secondary electron (ISE) detector is carried out for cross-sectional examination and morphological evolution description. Furthermore, nanostructure, high spatial resolution compositional study and phase identification are conducted by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX) and selected area electron diffraction (SAED). The results show that the IMCs growth rate is high suppressed and Ag3Al layer has been replaced by an Ag-In-Al ternary phase. The crystal structure of the ternary phase is identified as hexagonal close packing (hcp), which is same as the structure of Ag2Al. As a result, the weak phase and interfaces due to the growth of Ag3Al are eliminated, which will definitely increase the reliability of joints. Also, alloying with indium will improve the mechanical property and tarnishing resistance of Ag, therefore, it should be promising in the future Ag wire bonding market.","PeriodicalId":6555,"journal":{"name":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","volume":"45 1","pages":"2230-2236"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Eliminating Harmful Intermetallic Compound Phase in Silver Wire Bonding by Alloying Silver with Indium\",\"authors\":\"Jiaqi Wu, Chin C. Lee\",\"doi\":\"10.1109/ECTC.2018.00335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, silver (Ag) alloys have been emerging as bonding wire materials for commercialized electronic products because of moderate hardness, high ductility, best thermal and electrical conductivities among metals and low growth rate of intermetallic compounds (IMCs). Many compositional designs such as Ag-Palladium (Pd), Ag-Gold (Au)-Pd have been demonstrated and relevant reliability issues on aluminum (Al) pad have been studied. Ag2Al and Ag3Al have been identified as the interfacial IMCs. However, the softness, facture toughness and corrosion resistance of Ag2Al are much better than those of Ag3Al. Therefore, Ag3Al and its interfaces between adjacent phases become weak part in terms of long term reliability. In this paper, an approach to eliminate Ag3Al phase is proposed by alloying indium (In) into Ag. Comprehensive studies are preformed after the inter-diffusion between Ag and Al. Focus ion beam (FIB) is utilized to create clean cross sections and sample preparation. Scanning electron microscopy (SEM) by using in-beam secondary electron (ISE) detector is carried out for cross-sectional examination and morphological evolution description. Furthermore, nanostructure, high spatial resolution compositional study and phase identification are conducted by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX) and selected area electron diffraction (SAED). The results show that the IMCs growth rate is high suppressed and Ag3Al layer has been replaced by an Ag-In-Al ternary phase. The crystal structure of the ternary phase is identified as hexagonal close packing (hcp), which is same as the structure of Ag2Al. As a result, the weak phase and interfaces due to the growth of Ag3Al are eliminated, which will definitely increase the reliability of joints. Also, alloying with indium will improve the mechanical property and tarnishing resistance of Ag, therefore, it should be promising in the future Ag wire bonding market.\",\"PeriodicalId\":6555,\"journal\":{\"name\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"45 1\",\"pages\":\"2230-2236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2018.00335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2018.00335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,银(Ag)合金因其硬度适中、延展性好、导热性和导电性好、金属间化合物(IMCs)生长速度慢等优点,逐渐成为电子产品商用化的焊线材料。ag -钯(Pd)、ag -金(Au)-钯(Pd)等多种组合设计已经得到验证,相关的可靠性问题也在铝(Al)衬垫上得到了研究。Ag2Al和Ag3Al被确定为界面imc。然而,Ag2Al的柔软性、制造韧性和耐腐蚀性都比Ag3Al好得多。因此,在长期可靠性方面,Ag3Al及其相邻相之间的界面成为薄弱环节。本文提出了一种通过将铟(In)合金化到Ag中来消除Ag3Al相的方法。在Ag和Al之间的相互扩散后进行了全面的研究。利用聚焦离子束(FIB)创建干净的截面和样品制备。利用束内二次电子(ISE)探测器进行扫描电子显微镜(SEM)的横断面检查和形态演化描述。利用透射电子显微镜(TEM)、能量色散光谱(EDX)和选择区域电子衍射(SAED)对材料进行了纳米结构、高空间分辨率的组成研究和物相鉴定。结果表明,IMCs的生长速率受到抑制,Ag3Al层被Ag-In-Al三元相取代。三元相的晶体结构与Ag2Al的结构相同,为六方紧密堆积(hcp)。消除了由于Ag3Al生长而形成的弱相和界面,无疑提高了接头的可靠性。此外,铟的合金化可以改善银的机械性能和抗光泽性,因此,在未来的银丝键合市场上应该是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eliminating Harmful Intermetallic Compound Phase in Silver Wire Bonding by Alloying Silver with Indium
Recently, silver (Ag) alloys have been emerging as bonding wire materials for commercialized electronic products because of moderate hardness, high ductility, best thermal and electrical conductivities among metals and low growth rate of intermetallic compounds (IMCs). Many compositional designs such as Ag-Palladium (Pd), Ag-Gold (Au)-Pd have been demonstrated and relevant reliability issues on aluminum (Al) pad have been studied. Ag2Al and Ag3Al have been identified as the interfacial IMCs. However, the softness, facture toughness and corrosion resistance of Ag2Al are much better than those of Ag3Al. Therefore, Ag3Al and its interfaces between adjacent phases become weak part in terms of long term reliability. In this paper, an approach to eliminate Ag3Al phase is proposed by alloying indium (In) into Ag. Comprehensive studies are preformed after the inter-diffusion between Ag and Al. Focus ion beam (FIB) is utilized to create clean cross sections and sample preparation. Scanning electron microscopy (SEM) by using in-beam secondary electron (ISE) detector is carried out for cross-sectional examination and morphological evolution description. Furthermore, nanostructure, high spatial resolution compositional study and phase identification are conducted by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDX) and selected area electron diffraction (SAED). The results show that the IMCs growth rate is high suppressed and Ag3Al layer has been replaced by an Ag-In-Al ternary phase. The crystal structure of the ternary phase is identified as hexagonal close packing (hcp), which is same as the structure of Ag2Al. As a result, the weak phase and interfaces due to the growth of Ag3Al are eliminated, which will definitely increase the reliability of joints. Also, alloying with indium will improve the mechanical property and tarnishing resistance of Ag, therefore, it should be promising in the future Ag wire bonding market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信