基于AML图像卷积神经网络的白血病分类

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES
Karrar A. Kadhim, Fallah H Najjar, Ali Abdullhussein Waad, Ibrahim H. Al-Kharsan, Z. N. Khudhair, Ali Aqeel Salim
{"title":"基于AML图像卷积神经网络的白血病分类","authors":"Karrar A. Kadhim, Fallah H Najjar, Ali Abdullhussein Waad, Ibrahim H. Al-Kharsan, Z. N. Khudhair, Ali Aqeel Salim","doi":"10.11113/mjfas.v19n3.2901","DOIUrl":null,"url":null,"abstract":"Among the most pressing issues in the field of illness diagnostics is identifying and diagnosing leukemia at its earliest stages, which requires accurate distinction of malignant leukocytes at a low cost. Leukemia is quite common, yet laboratory diagnostic centres often lack the necessary technology to diagnose the disease properly, and the available procedures take a long time. They are considering the efficacy of machine learning (ML) in illness diagnostics and that deep learning as a machine learning method is becoming critical. This study proposes a convolutional neural network (CNN) deep learning model for leukemia diagnosis utilizing the AML (acute myeloid leukemia) dataset. The classification using the proposed method achieved results that exceeded 98% accuracy, the sensitivity of 94.73% and specificity of 98.87%.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"114 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Leukemia Classification using a Convolutional Neural Network of AML Images\",\"authors\":\"Karrar A. Kadhim, Fallah H Najjar, Ali Abdullhussein Waad, Ibrahim H. Al-Kharsan, Z. N. Khudhair, Ali Aqeel Salim\",\"doi\":\"10.11113/mjfas.v19n3.2901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the most pressing issues in the field of illness diagnostics is identifying and diagnosing leukemia at its earliest stages, which requires accurate distinction of malignant leukocytes at a low cost. Leukemia is quite common, yet laboratory diagnostic centres often lack the necessary technology to diagnose the disease properly, and the available procedures take a long time. They are considering the efficacy of machine learning (ML) in illness diagnostics and that deep learning as a machine learning method is becoming critical. This study proposes a convolutional neural network (CNN) deep learning model for leukemia diagnosis utilizing the AML (acute myeloid leukemia) dataset. The classification using the proposed method achieved results that exceeded 98% accuracy, the sensitivity of 94.73% and specificity of 98.87%.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n3.2901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n3.2901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 10

摘要

疾病诊断领域最紧迫的问题之一是在早期阶段识别和诊断白血病,这需要以低成本准确区分恶性白细胞。白血病很常见,但实验室诊断中心往往缺乏必要的技术来正确诊断这种疾病,而且现有的程序需要很长时间。他们正在考虑机器学习(ML)在疾病诊断中的功效,并且深度学习作为机器学习方法变得至关重要。本研究利用AML(急性髓性白血病)数据集提出了一种卷积神经网络(CNN)深度学习模型用于白血病诊断。该方法分类准确率超过98%,灵敏度为94.73%,特异性为98.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leukemia Classification using a Convolutional Neural Network of AML Images
Among the most pressing issues in the field of illness diagnostics is identifying and diagnosing leukemia at its earliest stages, which requires accurate distinction of malignant leukocytes at a low cost. Leukemia is quite common, yet laboratory diagnostic centres often lack the necessary technology to diagnose the disease properly, and the available procedures take a long time. They are considering the efficacy of machine learning (ML) in illness diagnostics and that deep learning as a machine learning method is becoming critical. This study proposes a convolutional neural network (CNN) deep learning model for leukemia diagnosis utilizing the AML (acute myeloid leukemia) dataset. The classification using the proposed method achieved results that exceeded 98% accuracy, the sensitivity of 94.73% and specificity of 98.87%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信