一些动态估计在时间尺度上的创新

Deeba Afzal, Muhammad Jibril Shahab Sahir
{"title":"一些动态估计在时间尺度上的创新","authors":"Deeba Afzal, Muhammad Jibril Shahab Sahir","doi":"10.31926/but.mif.2023.3.65.1.2","DOIUrl":null,"url":null,"abstract":"We establish fractional versions of generalizations of the Schweitzer, Kantorovich, Polya–Szego, Cassels, Greub–Rheinboldt, and reverse Minkowski inequalities on time scales. We present that fractional P´olya–Szego’s dynamic inequality generalizes Cassels’ inequality. Time scales calculus unifies and extends discrete, continuous, quantum versions of results.","PeriodicalId":53266,"journal":{"name":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations of some dynamic estimates combined on time scales\",\"authors\":\"Deeba Afzal, Muhammad Jibril Shahab Sahir\",\"doi\":\"10.31926/but.mif.2023.3.65.1.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish fractional versions of generalizations of the Schweitzer, Kantorovich, Polya–Szego, Cassels, Greub–Rheinboldt, and reverse Minkowski inequalities on time scales. We present that fractional P´olya–Szego’s dynamic inequality generalizes Cassels’ inequality. Time scales calculus unifies and extends discrete, continuous, quantum versions of results.\",\"PeriodicalId\":53266,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov Series V Economic Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2023.3.65.1.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov Series V Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2023.3.65.1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在时间尺度上建立了Schweitzer, Kantorovich, Polya-Szego, Cassels, Greub-Rheinboldt的分数型推广,以及反向Minkowski不等式。我们提出了分数阶P´olya-Szego的动态不等式推广了Cassels不等式。时间尺度微积分统一和扩展离散的,连续的,量子版本的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovations of some dynamic estimates combined on time scales
We establish fractional versions of generalizations of the Schweitzer, Kantorovich, Polya–Szego, Cassels, Greub–Rheinboldt, and reverse Minkowski inequalities on time scales. We present that fractional P´olya–Szego’s dynamic inequality generalizes Cassels’ inequality. Time scales calculus unifies and extends discrete, continuous, quantum versions of results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信