T ~ n完成的最大和最小工作

Pokalas P. Tal, M. S. Mahmud, M. A. Mbah, R. Ndubuisi
{"title":"T ~ n完成的最大和最小工作","authors":"Pokalas P. Tal, M. S. Mahmud, M. A. Mbah, R. Ndubuisi","doi":"10.5539/mas.v16n2p23","DOIUrl":null,"url":null,"abstract":"Let Xn and X*n be the finite sets {1,2,3,...,n} and {±1,±2,±3,..,±n} respectively. A map α: Xn→Xn is called a transformation on Xn We call α a signed transformation if α: Xn→X*n Let Tn and T˜n be the sets of full and signed full transformations on Xn respectively. The work, w(α) performed by a transformation α is defined as the sum of all the distances |i-iα| for each i ϵ dom(α) In this paper, we present a range for the values of w(α) for all α ϵ Tn. Further, we characterize elements of T˜n that attain minimum and maximum works and provide formulas for the values of these minimum and maximum.","PeriodicalId":18713,"journal":{"name":"Modern Applied Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum and Minimum Works Performed by T˜n\",\"authors\":\"Pokalas P. Tal, M. S. Mahmud, M. A. Mbah, R. Ndubuisi\",\"doi\":\"10.5539/mas.v16n2p23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Xn and X*n be the finite sets {1,2,3,...,n} and {±1,±2,±3,..,±n} respectively. A map α: Xn→Xn is called a transformation on Xn We call α a signed transformation if α: Xn→X*n Let Tn and T˜n be the sets of full and signed full transformations on Xn respectively. The work, w(α) performed by a transformation α is defined as the sum of all the distances |i-iα| for each i ϵ dom(α) In this paper, we present a range for the values of w(α) for all α ϵ Tn. Further, we characterize elements of T˜n that attain minimum and maximum works and provide formulas for the values of these minimum and maximum.\",\"PeriodicalId\":18713,\"journal\":{\"name\":\"Modern Applied Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Applied Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/mas.v16n2p23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Applied Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/mas.v16n2p23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设Xn和X*n为有限集{1,2,3,…,n}和{±1,±2,±3,…,分别±n}。如果α: Xn→X*n设Tn和T ~ n分别是Xn上的满变换和有符号满变换的集合,则称α为有符号变换。由变换α完成的功w(α)被定义为每个i λ dom(α)的所有距离|i-i - α|的和。在本文中,我们给出了所有α λ Tn的w(α)值的范围。进一步,我们描述了T ~ n中获得最小和最大功的元素,并提供了这些最小和最大值的值的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum and Minimum Works Performed by T˜n
Let Xn and X*n be the finite sets {1,2,3,...,n} and {±1,±2,±3,..,±n} respectively. A map α: Xn→Xn is called a transformation on Xn We call α a signed transformation if α: Xn→X*n Let Tn and T˜n be the sets of full and signed full transformations on Xn respectively. The work, w(α) performed by a transformation α is defined as the sum of all the distances |i-iα| for each i ϵ dom(α) In this paper, we present a range for the values of w(α) for all α ϵ Tn. Further, we characterize elements of T˜n that attain minimum and maximum works and provide formulas for the values of these minimum and maximum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信