W. Deferme, R. S. N. Kumar, I. Verboven, M. V. Landeghem, Hilde Pellaers, B. Ruttens, J. D’Haen, K. Vandewal
{"title":"有机发光二极管用超声喷涂电子注入和输运层的形态学和电光特性","authors":"W. Deferme, R. S. N. Kumar, I. Verboven, M. V. Landeghem, Hilde Pellaers, B. Ruttens, J. D’Haen, K. Vandewal","doi":"10.1117/12.2593913","DOIUrl":null,"url":null,"abstract":"Lighting today is expected to be light weighted, flexible, highly efficient, non-expensive and fabricated in an environment friendly way. Organic light emitting diodes (OLEDs) meet all of these requirements and can be applied using inexpensive and roll-to-roll compatible printing techniques. This work demonstrates the ultrasonic spray coating (USSC) of polyethylenimine (PEI) and polyethylenimine(ethoxylated) (PEIE) as electron injection/transport layer (EIL/ETL) for OLEDs. This high-end printing technique employs ultrasonic atomization to break down a liquid into a spray of homogeneous small (20 µm) droplets. The PEI(E) layer was optimised using USSC and subjected to a complete morphological and electro-optical characterisation. For all manufactured devices current and voltage characteristics and luminous performances were obtained. This study confirms the versatility of USSC and the suitability of PEI(E) as excellent EIL/ETL for OLEDs and paves the way towards fully printed devices.","PeriodicalId":19672,"journal":{"name":"Organic and Hybrid Light Emitting Materials and Devices XXV","volume":"255 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological and electro-optical characterization of an ultrasonic spray coated electron injection and transport layer for organic light emitting diodes\",\"authors\":\"W. Deferme, R. S. N. Kumar, I. Verboven, M. V. Landeghem, Hilde Pellaers, B. Ruttens, J. D’Haen, K. Vandewal\",\"doi\":\"10.1117/12.2593913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lighting today is expected to be light weighted, flexible, highly efficient, non-expensive and fabricated in an environment friendly way. Organic light emitting diodes (OLEDs) meet all of these requirements and can be applied using inexpensive and roll-to-roll compatible printing techniques. This work demonstrates the ultrasonic spray coating (USSC) of polyethylenimine (PEI) and polyethylenimine(ethoxylated) (PEIE) as electron injection/transport layer (EIL/ETL) for OLEDs. This high-end printing technique employs ultrasonic atomization to break down a liquid into a spray of homogeneous small (20 µm) droplets. The PEI(E) layer was optimised using USSC and subjected to a complete morphological and electro-optical characterisation. For all manufactured devices current and voltage characteristics and luminous performances were obtained. This study confirms the versatility of USSC and the suitability of PEI(E) as excellent EIL/ETL for OLEDs and paves the way towards fully printed devices.\",\"PeriodicalId\":19672,\"journal\":{\"name\":\"Organic and Hybrid Light Emitting Materials and Devices XXV\",\"volume\":\"255 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic and Hybrid Light Emitting Materials and Devices XXV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic and Hybrid Light Emitting Materials and Devices XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Morphological and electro-optical characterization of an ultrasonic spray coated electron injection and transport layer for organic light emitting diodes
Lighting today is expected to be light weighted, flexible, highly efficient, non-expensive and fabricated in an environment friendly way. Organic light emitting diodes (OLEDs) meet all of these requirements and can be applied using inexpensive and roll-to-roll compatible printing techniques. This work demonstrates the ultrasonic spray coating (USSC) of polyethylenimine (PEI) and polyethylenimine(ethoxylated) (PEIE) as electron injection/transport layer (EIL/ETL) for OLEDs. This high-end printing technique employs ultrasonic atomization to break down a liquid into a spray of homogeneous small (20 µm) droplets. The PEI(E) layer was optimised using USSC and subjected to a complete morphological and electro-optical characterisation. For all manufactured devices current and voltage characteristics and luminous performances were obtained. This study confirms the versatility of USSC and the suitability of PEI(E) as excellent EIL/ETL for OLEDs and paves the way towards fully printed devices.