{"title":"综合考虑通信和计算网络资源的云无线接入网性能评估","authors":"Ekaterina Mpantola, J. Vardakas, M. Louta","doi":"10.1109/SEEDA-CECNSM53056.2021.9566269","DOIUrl":null,"url":null,"abstract":"With the introduction of 5G technology, telecommunications industry enters a stage where remarkable changes occur. The rapid increase of traffic load combined with the emergence of new network requirements has led to the need of developing a network architecture capable of supporting a network of high efficiency, improved transmission rates and low latency. C-RAN architecture is able to meet all these challenges, while focuses on the innovation of a functional split in the Base Station (BS) where the Baseband Units - BBU is detached from the Remote Radio Heads - RRH. Its successful implementation is able to bring significant benefits where among them cost reduction, the entrance of new network requirements and services as well as enhanced network flexibility, are the ones that dominate. In this paper, we perform the analysis of this type of network through the application of specific Teletraffic Models: the Multi-rate Loss Model and the Retry Models. The Multi-rate Loss Model refers to systems that serve different types of services, whose calls are accepted by the system if only there are service units available. The Retry Models allows rejected calls to retry their connection to the system, offering a lower chance of losing calls and thus reduced network performance. The comparison of the blocking probabilities can lead us to conclusions about the efficiency of these models in a C-RAN network and then in the evaluation of the overall network performance.","PeriodicalId":68279,"journal":{"name":"计算机工程与设计","volume":"45 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of Cloud Radio Access Networks by jointly considering communicational and computational network resources\",\"authors\":\"Ekaterina Mpantola, J. Vardakas, M. Louta\",\"doi\":\"10.1109/SEEDA-CECNSM53056.2021.9566269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the introduction of 5G technology, telecommunications industry enters a stage where remarkable changes occur. The rapid increase of traffic load combined with the emergence of new network requirements has led to the need of developing a network architecture capable of supporting a network of high efficiency, improved transmission rates and low latency. C-RAN architecture is able to meet all these challenges, while focuses on the innovation of a functional split in the Base Station (BS) where the Baseband Units - BBU is detached from the Remote Radio Heads - RRH. Its successful implementation is able to bring significant benefits where among them cost reduction, the entrance of new network requirements and services as well as enhanced network flexibility, are the ones that dominate. In this paper, we perform the analysis of this type of network through the application of specific Teletraffic Models: the Multi-rate Loss Model and the Retry Models. The Multi-rate Loss Model refers to systems that serve different types of services, whose calls are accepted by the system if only there are service units available. The Retry Models allows rejected calls to retry their connection to the system, offering a lower chance of losing calls and thus reduced network performance. The comparison of the blocking probabilities can lead us to conclusions about the efficiency of these models in a C-RAN network and then in the evaluation of the overall network performance.\",\"PeriodicalId\":68279,\"journal\":{\"name\":\"计算机工程与设计\",\"volume\":\"45 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"计算机工程与设计\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"计算机工程与设计","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance evaluation of Cloud Radio Access Networks by jointly considering communicational and computational network resources
With the introduction of 5G technology, telecommunications industry enters a stage where remarkable changes occur. The rapid increase of traffic load combined with the emergence of new network requirements has led to the need of developing a network architecture capable of supporting a network of high efficiency, improved transmission rates and low latency. C-RAN architecture is able to meet all these challenges, while focuses on the innovation of a functional split in the Base Station (BS) where the Baseband Units - BBU is detached from the Remote Radio Heads - RRH. Its successful implementation is able to bring significant benefits where among them cost reduction, the entrance of new network requirements and services as well as enhanced network flexibility, are the ones that dominate. In this paper, we perform the analysis of this type of network through the application of specific Teletraffic Models: the Multi-rate Loss Model and the Retry Models. The Multi-rate Loss Model refers to systems that serve different types of services, whose calls are accepted by the system if only there are service units available. The Retry Models allows rejected calls to retry their connection to the system, offering a lower chance of losing calls and thus reduced network performance. The comparison of the blocking probabilities can lead us to conclusions about the efficiency of these models in a C-RAN network and then in the evaluation of the overall network performance.
期刊介绍:
Computer Engineering and Design is supervised by China Aerospace Science and Industry Corporation and sponsored by the 706th Institute of the Second Academy of China Aerospace Science and Industry Corporation. It was founded in 1980. The purpose of the journal is to disseminate new technologies and promote academic exchanges. Since its inception, it has adhered to the principle of combining depth and breadth, theory and application, and focused on reporting cutting-edge and hot computer technologies. The journal accepts academic papers with innovative and independent academic insights, including papers on fund projects, award-winning research papers, outstanding papers at academic conferences, doctoral and master's theses, etc.