Haiwen Xu, Jishen Zhang, L. Lima, J. Margetis, R. Khazaka, Q. Xie, J. Tolle, Chengkuan Wang, Haibo Wang, Zuopu Zhou, Qiwen Kong, X. Gong
{"title":"利用原位CVD外延技术实现$1.1 \\乘以10^{21}\\ mathm {cm}^{-3}$活性掺杂浓度和$5.7\\乘以10^{-10}\\Omega-\\ mathm {cm}^{2}$接触电阻率","authors":"Haiwen Xu, Jishen Zhang, L. Lima, J. Margetis, R. Khazaka, Q. Xie, J. Tolle, Chengkuan Wang, Haibo Wang, Zuopu Zhou, Qiwen Kong, X. Gong","doi":"10.1109/VLSITechnology18217.2020.9265058","DOIUrl":null,"url":null,"abstract":"For the first time, we have achieved contact resistivity <tex>$(p_{c}$</tex>) less than 10<inf>−9</inf> Ω-cm<inf>2</inf> for p-type metal/Si<inf>1-x</inf>Ge<inf>x</inf> contacts with in-situ doping-only technique. This is enabled by an optimized surface Gallium (Ga)-boosted Boron (B)-doped <tex>$\\mathrm{Si}_{0.5}\\mathrm{Ge}_{0.5}$</tex> having active doping concentration <tex>$(N_{a})$</tex> of <tex>$1.1 \\times 10^{21}$</tex> cm<inf>−3</inf> grown using reduced pressure chemical vapour deposition (RPCVD). Compared with B-only doped sample with <tex>$N_{a}$</tex> of <tex>$9\\times 10^{20}\\mathrm{cm}^{-3}$</tex> B and Ga codoping enhances <tex>$N_{a}$</tex> by <tex>$2\\times 10^{20} \\mathrm{cm}^{-3}$</tex> reducing <tex>$\\rho_{c}$</tex> from <tex>$1.5\\times 10^{-9}\\Omega-\\mathrm{cm}^{2}$</tex> to 5.7 <tex>$\\times 10^{10}\\Omega-\\mathrm{cm}^{2}.\\ \\rho c$</tex> was extracted using advanced ladder transmission line model (LTLM) structures. It was also found that sub- <tex>$10^{9}\\Omega-\\mathrm{cm}^{2}\\rho_{c}$</tex> of our <tex>$\\mathrm{Ti}/\\mathrm{Si}_{0.5}\\mathrm{Ge}_{0.5}$</tex> contact can be maintained with thermal budget up to 450°C.","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"81 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Ga-boosted Boron-doped $\\\\mathrm{Si}_{0.5}\\\\mathrm{Geo}_{0.5}$ using In-situ CVD Epitaxy: Achieving $1.1 \\\\times 10^{21}\\\\mathrm{cm}^{-3}$ Active Doping Concentration and $5.7\\\\times 10^{-10}\\\\Omega-\\\\mathrm{cm}^{2}$ Contact Resistivity\",\"authors\":\"Haiwen Xu, Jishen Zhang, L. Lima, J. Margetis, R. Khazaka, Q. Xie, J. Tolle, Chengkuan Wang, Haibo Wang, Zuopu Zhou, Qiwen Kong, X. Gong\",\"doi\":\"10.1109/VLSITechnology18217.2020.9265058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the first time, we have achieved contact resistivity <tex>$(p_{c}$</tex>) less than 10<inf>−9</inf> Ω-cm<inf>2</inf> for p-type metal/Si<inf>1-x</inf>Ge<inf>x</inf> contacts with in-situ doping-only technique. This is enabled by an optimized surface Gallium (Ga)-boosted Boron (B)-doped <tex>$\\\\mathrm{Si}_{0.5}\\\\mathrm{Ge}_{0.5}$</tex> having active doping concentration <tex>$(N_{a})$</tex> of <tex>$1.1 \\\\times 10^{21}$</tex> cm<inf>−3</inf> grown using reduced pressure chemical vapour deposition (RPCVD). Compared with B-only doped sample with <tex>$N_{a}$</tex> of <tex>$9\\\\times 10^{20}\\\\mathrm{cm}^{-3}$</tex> B and Ga codoping enhances <tex>$N_{a}$</tex> by <tex>$2\\\\times 10^{20} \\\\mathrm{cm}^{-3}$</tex> reducing <tex>$\\\\rho_{c}$</tex> from <tex>$1.5\\\\times 10^{-9}\\\\Omega-\\\\mathrm{cm}^{2}$</tex> to 5.7 <tex>$\\\\times 10^{10}\\\\Omega-\\\\mathrm{cm}^{2}.\\\\ \\\\rho c$</tex> was extracted using advanced ladder transmission line model (LTLM) structures. It was also found that sub- <tex>$10^{9}\\\\Omega-\\\\mathrm{cm}^{2}\\\\rho_{c}$</tex> of our <tex>$\\\\mathrm{Ti}/\\\\mathrm{Si}_{0.5}\\\\mathrm{Ge}_{0.5}$</tex> contact can be maintained with thermal budget up to 450°C.\",\"PeriodicalId\":6850,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Technology\",\"volume\":\"81 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSITechnology18217.2020.9265058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Ga-boosted Boron-doped $\mathrm{Si}_{0.5}\mathrm{Geo}_{0.5}$ using In-situ CVD Epitaxy: Achieving $1.1 \times 10^{21}\mathrm{cm}^{-3}$ Active Doping Concentration and $5.7\times 10^{-10}\Omega-\mathrm{cm}^{2}$ Contact Resistivity
For the first time, we have achieved contact resistivity $(p_{c}$) less than 10−9 Ω-cm2 for p-type metal/Si1-xGex contacts with in-situ doping-only technique. This is enabled by an optimized surface Gallium (Ga)-boosted Boron (B)-doped $\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$ having active doping concentration $(N_{a})$ of $1.1 \times 10^{21}$ cm−3 grown using reduced pressure chemical vapour deposition (RPCVD). Compared with B-only doped sample with $N_{a}$ of $9\times 10^{20}\mathrm{cm}^{-3}$ B and Ga codoping enhances $N_{a}$ by $2\times 10^{20} \mathrm{cm}^{-3}$ reducing $\rho_{c}$ from $1.5\times 10^{-9}\Omega-\mathrm{cm}^{2}$ to 5.7 $\times 10^{10}\Omega-\mathrm{cm}^{2}.\ \rho c$ was extracted using advanced ladder transmission line model (LTLM) structures. It was also found that sub- $10^{9}\Omega-\mathrm{cm}^{2}\rho_{c}$ of our $\mathrm{Ti}/\mathrm{Si}_{0.5}\mathrm{Ge}_{0.5}$ contact can be maintained with thermal budget up to 450°C.