a-Si: h基纳米线阵列太阳能电池研究的耦合光学和电学建模

Alexandra Levtchenko, R. Lachaume, Jérôme Michallon, S. Collin, J. Alvarez, S. D. Gall, Z. Djebbour, J. Kleider
{"title":"a-Si: h基纳米线阵列太阳能电池研究的耦合光学和电学建模","authors":"Alexandra Levtchenko, R. Lachaume, Jérôme Michallon, S. Collin, J. Alvarez, S. D. Gall, Z. Djebbour, J. Kleider","doi":"10.1002/PSSC.201700181","DOIUrl":null,"url":null,"abstract":"Coupled optical/electrical simulations have been performed on solar cells consisting in arrays of p-i-n radial nanowires based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell heterojunctions. Three-dimensional (3D) optical calculations based on rigorous coupled wave analysis (RCWA) are firstly performed and then coupled to a semiconductor device simulator that exploits the radial symmetry of the nanowires. By varying either the doping concentration of the c-Si core, or the work function of the Al-doped ZnO (AZO) back contact we can separate and originally highlight the contribution to the cells performance of the nanowires themselves (the radial cell) from the planar part in between the nanowires (the planar cell). We show that the short-circuit current density (Jsc) only depends on the doping of the c-Si core indicating that it is mainly influenced by the radial cell. On the contrary the open-circuit voltage (Voc) is strongly affected by the back contact conditions (AZO work function), revealing an important impact of the interspacing between the nanowires on the characteristics of the entire nanowire array. We explain this strong influence of the back contact conditions by the fact that it determines the band-bending in the a-Si:H absorber shell touching the AZO, i.e. in the planar part. Therefore, it directly impacts the potential drop (Vbi) in the same area. For low AZO work functions, the dark current density (Jdark) is increased in the planar region, where Vbi is lower, which degrades the Voc of the entire cell.","PeriodicalId":20065,"journal":{"name":"Physica Status Solidi (c)","volume":"56 1","pages":"1700181"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coupling Optical and Electrical Modelling for the study of a-Si:H-based nanowire Array Solar Cells\",\"authors\":\"Alexandra Levtchenko, R. Lachaume, Jérôme Michallon, S. Collin, J. Alvarez, S. D. Gall, Z. Djebbour, J. Kleider\",\"doi\":\"10.1002/PSSC.201700181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coupled optical/electrical simulations have been performed on solar cells consisting in arrays of p-i-n radial nanowires based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell heterojunctions. Three-dimensional (3D) optical calculations based on rigorous coupled wave analysis (RCWA) are firstly performed and then coupled to a semiconductor device simulator that exploits the radial symmetry of the nanowires. By varying either the doping concentration of the c-Si core, or the work function of the Al-doped ZnO (AZO) back contact we can separate and originally highlight the contribution to the cells performance of the nanowires themselves (the radial cell) from the planar part in between the nanowires (the planar cell). We show that the short-circuit current density (Jsc) only depends on the doping of the c-Si core indicating that it is mainly influenced by the radial cell. On the contrary the open-circuit voltage (Voc) is strongly affected by the back contact conditions (AZO work function), revealing an important impact of the interspacing between the nanowires on the characteristics of the entire nanowire array. We explain this strong influence of the back contact conditions by the fact that it determines the band-bending in the a-Si:H absorber shell touching the AZO, i.e. in the planar part. Therefore, it directly impacts the potential drop (Vbi) in the same area. For low AZO work functions, the dark current density (Jdark) is increased in the planar region, where Vbi is lower, which degrades the Voc of the entire cell.\",\"PeriodicalId\":20065,\"journal\":{\"name\":\"Physica Status Solidi (c)\",\"volume\":\"56 1\",\"pages\":\"1700181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi (c)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/PSSC.201700181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi (c)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PSSC.201700181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

对基于晶体p型硅(c-Si)核/氢化非晶硅(a-Si:H)壳异质结的p-i-n径向纳米线阵列太阳能电池进行了耦合光学/电学模拟。首先进行了基于严格耦合波分析(RCWA)的三维光学计算,然后耦合到利用纳米线径向对称性的半导体器件模拟器上。通过改变c-Si核心的掺杂浓度或al掺杂ZnO (AZO)背触点的功函数,我们可以将纳米线本身(径向电池)与纳米线之间的平面部分(平面电池)分开并最初突出对电池性能的贡献。我们发现短路电流密度(Jsc)只取决于c-Si芯的掺杂,表明它主要受径向电池的影响。相反,开路电压(Voc)受到反接触条件(AZO功函数)的强烈影响,揭示了纳米线间距对整个纳米线阵列特性的重要影响。我们解释了背接触条件的这种强烈影响,因为它决定了a-Si:H吸收壳接触AZO的带弯曲,即在平面部分。因此,它直接影响到同一区域的电位降(Vbi)。对于低AZO功函数,在Vbi较低的平面区域暗电流密度(Jdark)增加,从而降低了整个电池的Voc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling Optical and Electrical Modelling for the study of a-Si:H-based nanowire Array Solar Cells
Coupled optical/electrical simulations have been performed on solar cells consisting in arrays of p-i-n radial nanowires based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell heterojunctions. Three-dimensional (3D) optical calculations based on rigorous coupled wave analysis (RCWA) are firstly performed and then coupled to a semiconductor device simulator that exploits the radial symmetry of the nanowires. By varying either the doping concentration of the c-Si core, or the work function of the Al-doped ZnO (AZO) back contact we can separate and originally highlight the contribution to the cells performance of the nanowires themselves (the radial cell) from the planar part in between the nanowires (the planar cell). We show that the short-circuit current density (Jsc) only depends on the doping of the c-Si core indicating that it is mainly influenced by the radial cell. On the contrary the open-circuit voltage (Voc) is strongly affected by the back contact conditions (AZO work function), revealing an important impact of the interspacing between the nanowires on the characteristics of the entire nanowire array. We explain this strong influence of the back contact conditions by the fact that it determines the band-bending in the a-Si:H absorber shell touching the AZO, i.e. in the planar part. Therefore, it directly impacts the potential drop (Vbi) in the same area. For low AZO work functions, the dark current density (Jdark) is increased in the planar region, where Vbi is lower, which degrades the Voc of the entire cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信