{"title":"(f)中Schwartz分布的连续小波变换,𝑛≤1","authors":"J. Pandey","doi":"10.1515/anly-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we extend the continuous wavelet transform to Schwartz distributions in D ′ ( R n ) \\mathcal{D}^{\\prime}(\\mathbb{R}^{n}) , n ≥ 1 n\\geq 1 , and derive the corresponding wavelet inversion formula (valid modulo a constant distribution) interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is an element ψ ( x ) \\psi(x) of D ( R n ) \\mathcal{D}(\\mathbb{R}^{n}) , n ≥ 1 n\\geq 1 , which, when integrated along each of the real axes X 1 , X 2 , X 3 , … , X n X_{1},X_{2},X_{3},\\ldots,X_{n} vanishes, but none of its moments ∫ R n ψ ( x ) x m d x \\int_{\\mathbb{R}^{n}}\\psi(x)x^{m}\\,dx is zero; here x m = x 1 m 1 x 2 m 2 … x n m n x^{m}=x_{1}^{{m_{1}}}\\,x_{2}^{{m_{2}}}\\ldots x_{n}^{{m_{n}}} , d x = d x 1 d x 2 … d x n dx=dx_{1}\\,dx_{2}\\ldots dx_{n} and m = ( m 1 , m 2 , … , m n ) m=(m_{1},m_{2},\\ldots,m_{n}) and each of m 1 , m 2 , … , m n m_{1},m_{2},\\ldots,m_{n} is at least 1. The set of such kernel will be denoted by D m ( R n ) \\mathcal{D}_{m}(\\mathbb{R}^{n}) . But the uniqueness theorem for our wavelet inversion formula is valid for the space D F ′ ( R n ) \\mathcal{D}_{F}^{\\prime}(\\mathbb{R}^{n}) obtained by filtering (deleting) (i) all non-zero constant distributions from the space D ′ ( R n ) \\mathcal{D}^{\\prime}(\\mathbb{R}^{n}) , (ii) all non-zero constants that appear with a distribution as a union as for example for x 1 2 + x 2 2 + ⋯ x n 2 1 + x 1 2 + x 2 2 + ⋯ x n 2 = 1 - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \\frac{x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}}=1-\\frac{1}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}} , 1 is deleted and - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \\frac{-1}{1+x_{1}^{2}+x_{2}^{2}+\\cdots x_{n}^{2}} is retained.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"21 1","pages":"133 - 139"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous wavelet transform of Schwartz distributions in 𝒟′(ℝ𝑛), 𝑛 ≤ 1\",\"authors\":\"J. Pandey\",\"doi\":\"10.1515/anly-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we extend the continuous wavelet transform to Schwartz distributions in D ′ ( R n ) \\\\mathcal{D}^{\\\\prime}(\\\\mathbb{R}^{n}) , n ≥ 1 n\\\\geq 1 , and derive the corresponding wavelet inversion formula (valid modulo a constant distribution) interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is an element ψ ( x ) \\\\psi(x) of D ( R n ) \\\\mathcal{D}(\\\\mathbb{R}^{n}) , n ≥ 1 n\\\\geq 1 , which, when integrated along each of the real axes X 1 , X 2 , X 3 , … , X n X_{1},X_{2},X_{3},\\\\ldots,X_{n} vanishes, but none of its moments ∫ R n ψ ( x ) x m d x \\\\int_{\\\\mathbb{R}^{n}}\\\\psi(x)x^{m}\\\\,dx is zero; here x m = x 1 m 1 x 2 m 2 … x n m n x^{m}=x_{1}^{{m_{1}}}\\\\,x_{2}^{{m_{2}}}\\\\ldots x_{n}^{{m_{n}}} , d x = d x 1 d x 2 … d x n dx=dx_{1}\\\\,dx_{2}\\\\ldots dx_{n} and m = ( m 1 , m 2 , … , m n ) m=(m_{1},m_{2},\\\\ldots,m_{n}) and each of m 1 , m 2 , … , m n m_{1},m_{2},\\\\ldots,m_{n} is at least 1. The set of such kernel will be denoted by D m ( R n ) \\\\mathcal{D}_{m}(\\\\mathbb{R}^{n}) . But the uniqueness theorem for our wavelet inversion formula is valid for the space D F ′ ( R n ) \\\\mathcal{D}_{F}^{\\\\prime}(\\\\mathbb{R}^{n}) obtained by filtering (deleting) (i) all non-zero constant distributions from the space D ′ ( R n ) \\\\mathcal{D}^{\\\\prime}(\\\\mathbb{R}^{n}) , (ii) all non-zero constants that appear with a distribution as a union as for example for x 1 2 + x 2 2 + ⋯ x n 2 1 + x 1 2 + x 2 2 + ⋯ x n 2 = 1 - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \\\\frac{x_{1}^{2}+x_{2}^{2}+\\\\cdots x_{n}^{2}}{1+x_{1}^{2}+x_{2}^{2}+\\\\cdots x_{n}^{2}}=1-\\\\frac{1}{1+x_{1}^{2}+x_{2}^{2}+\\\\cdots x_{n}^{2}} , 1 is deleted and - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \\\\frac{-1}{1+x_{1}^{2}+x_{2}^{2}+\\\\cdots x_{n}^{2}} is retained.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"21 1\",\"pages\":\"133 - 139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
抽象在这个挑战》,这篇文章我们extend wavelet用金币到D′施瓦茨distributions里(R n) D \ mathcal {} ^ {\ (prime的mathbb {R) ^ {n}), n≥1 n \ geq 1和derive the corresponding wavelet inversion公式(有效模a康斯坦distribution) interpreting集的《软弱distributional感。《内核of our wavelet用金币是一个元素ψ(x) \ Dpsi (x)》(R n) D mathcal {} (\ mathbb {R ^ {n}), n≥1的n \ geq 1,无关紧要,当集成每歌》真正的斧头x 1 x = 2,乘以3,... x n X_ {1}, X_ {2}, X_ {3} \ ldots, X_ {n,它的消失,但无人的时刻∫R nψm (x) xdx int_ {\ mathbb {R的n ^ {}} \ psi (x) x ^ {m的\,dx是零;这里x = x 1 m 1×2米(6.5英尺)2...x n m x n ^ {} = {1} ^ x_ {{m_ {1}}} \, x_ {2} ^ {{m_ {2}}} \ ldots x_ {n} ^ {{m_ {n}}} 1, d dx = xdx = 2...dx n dx = dx_ {1}, {2} dx_ \ ldots dx_ {n}和m = (1, m = 2, ... m n) = (m_ {1}, m_ {2} \ ldots m_ {n})》和每1,m 2, m n m_ {1} ... m_ {2}, \ ldots m_ {n}是至少1。如此之套内核威尔被D m(denoted R的n) D \ mathcal {} {m的(R \ mathbb {} ^ {n})。但我们的无uniqueness定理wavelet inversion公式是有效的空间D F′(R的n) D \ mathcal {} {} ^ {\ F撇号的(R \ mathbb {} ^ {n})获得由过滤(deleting) (i)条所有non-zero康斯坦distributions从《太空D′(R n) D \ mathcal {} ^ {(prime的\ mathbb {R的n ^ {}),(ii)所有non-zero constants这出现在为操作for a distribution美国联合美国x 1 x = 2 + 2 +⋯x n 2 + 1×1 + 2 + x = 2⋯x n 2 = x - 1 + 1 = 2 + x = 2 + 2⋯x n 2 \ frac {x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^ {2}} {1 + x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {} ^ {2}} = n + 1 - \ frac {1} {x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^{2}},是deleted和x - 1 + 1 + 2 + x = 2⋯x n 2 \ frac {- 1} {1 + x_ {1} {2} ^ x_ {2} ^ {} + \ cdots x_ {n} ^{2}}是retained。
Continuous wavelet transform of Schwartz distributions in 𝒟′(ℝ𝑛), 𝑛 ≤ 1
Abstract In this paper, we extend the continuous wavelet transform to Schwartz distributions in D ′ ( R n ) \mathcal{D}^{\prime}(\mathbb{R}^{n}) , n ≥ 1 n\geq 1 , and derive the corresponding wavelet inversion formula (valid modulo a constant distribution) interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is an element ψ ( x ) \psi(x) of D ( R n ) \mathcal{D}(\mathbb{R}^{n}) , n ≥ 1 n\geq 1 , which, when integrated along each of the real axes X 1 , X 2 , X 3 , … , X n X_{1},X_{2},X_{3},\ldots,X_{n} vanishes, but none of its moments ∫ R n ψ ( x ) x m d x \int_{\mathbb{R}^{n}}\psi(x)x^{m}\,dx is zero; here x m = x 1 m 1 x 2 m 2 … x n m n x^{m}=x_{1}^{{m_{1}}}\,x_{2}^{{m_{2}}}\ldots x_{n}^{{m_{n}}} , d x = d x 1 d x 2 … d x n dx=dx_{1}\,dx_{2}\ldots dx_{n} and m = ( m 1 , m 2 , … , m n ) m=(m_{1},m_{2},\ldots,m_{n}) and each of m 1 , m 2 , … , m n m_{1},m_{2},\ldots,m_{n} is at least 1. The set of such kernel will be denoted by D m ( R n ) \mathcal{D}_{m}(\mathbb{R}^{n}) . But the uniqueness theorem for our wavelet inversion formula is valid for the space D F ′ ( R n ) \mathcal{D}_{F}^{\prime}(\mathbb{R}^{n}) obtained by filtering (deleting) (i) all non-zero constant distributions from the space D ′ ( R n ) \mathcal{D}^{\prime}(\mathbb{R}^{n}) , (ii) all non-zero constants that appear with a distribution as a union as for example for x 1 2 + x 2 2 + ⋯ x n 2 1 + x 1 2 + x 2 2 + ⋯ x n 2 = 1 - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \frac{x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}}=1-\frac{1}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}} , 1 is deleted and - 1 1 + x 1 2 + x 2 2 + ⋯ x n 2 \frac{-1}{1+x_{1}^{2}+x_{2}^{2}+\cdots x_{n}^{2}} is retained.