基于卷积神经网络的冠状动脉粥样硬化斑块组成表征

Q4 Biochemistry, Genetics and Molecular Biology
Yifan Yin, Chunliu He, Biao Xu, Zhiyong Li
{"title":"基于卷积神经网络的冠状动脉粥样硬化斑块组成表征","authors":"Yifan Yin, Chunliu He, Biao Xu, Zhiyong Li","doi":"10.32604/MCB.2019.05732","DOIUrl":null,"url":null,"abstract":"The tissue composition and morphological structure of atherosclerotic plaques determine its stability or vulnerability. Intravascular optical coherence tomography (IVOCT) has rapidly become the method of choice for assessing the pathology of the coronary arterial wall in vivo due to its superior resolution. However, in clinical practice, the analysis of plaque composition of OCT images mainly relies on the interpretation of images by well-trained experts, which is a time-consuming, labor-intensive procedure and it is also subjective. The purpose of this study is to use the Convolutional neural network (CNN) method to automatically extract the best feature information from the OCT images to characterize the three basic components of atherosclerotic plaque (fibrous, lipid, and calcification). This study selected the OCT images of 20 patients from Nanjing Drum Tower Hospital from 2015.12 to 2016.12. The OCT-reading expert first excluded the images containing the brackets, and then divided all the remaining images, resulting in 1500 plaque OCT images. The expert labeled plaque composition in each image, cutting it into 11*11 image patches and obtained 87390 patches. 75000 of them were set as training examples and the others were set for testing. The classification accuracy of the test set served as the evaluation criterion. The experimental results show that the average classification accuracy of the fibrous, calcification, and lipid patches by the CNN classifier was over 75%, especially to characterize the fibrous patches, whose accuracy could reach more than 80%. The proposed method is effective and robust in the analysis of atherosclerotic plaque composition in coronary OCT images, providing a base for further segmentation study.","PeriodicalId":48719,"journal":{"name":"Molecular & Cellular Biomechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of Coronary Atherosclerotic Plaque Composition Based on Convolutional Neural Network (CNN)\",\"authors\":\"Yifan Yin, Chunliu He, Biao Xu, Zhiyong Li\",\"doi\":\"10.32604/MCB.2019.05732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tissue composition and morphological structure of atherosclerotic plaques determine its stability or vulnerability. Intravascular optical coherence tomography (IVOCT) has rapidly become the method of choice for assessing the pathology of the coronary arterial wall in vivo due to its superior resolution. However, in clinical practice, the analysis of plaque composition of OCT images mainly relies on the interpretation of images by well-trained experts, which is a time-consuming, labor-intensive procedure and it is also subjective. The purpose of this study is to use the Convolutional neural network (CNN) method to automatically extract the best feature information from the OCT images to characterize the three basic components of atherosclerotic plaque (fibrous, lipid, and calcification). This study selected the OCT images of 20 patients from Nanjing Drum Tower Hospital from 2015.12 to 2016.12. The OCT-reading expert first excluded the images containing the brackets, and then divided all the remaining images, resulting in 1500 plaque OCT images. The expert labeled plaque composition in each image, cutting it into 11*11 image patches and obtained 87390 patches. 75000 of them were set as training examples and the others were set for testing. The classification accuracy of the test set served as the evaluation criterion. The experimental results show that the average classification accuracy of the fibrous, calcification, and lipid patches by the CNN classifier was over 75%, especially to characterize the fibrous patches, whose accuracy could reach more than 80%. The proposed method is effective and robust in the analysis of atherosclerotic plaque composition in coronary OCT images, providing a base for further segmentation study.\",\"PeriodicalId\":48719,\"journal\":{\"name\":\"Molecular & Cellular Biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Biomechanics\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.32604/MCB.2019.05732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Biomechanics","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.32604/MCB.2019.05732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

动脉粥样硬化斑块的组织组成和形态结构决定了其稳定性或脆弱性。由于其优越的分辨率,血管内光学相干断层扫描(IVOCT)已迅速成为评估活体冠状动脉壁病理的首选方法。然而,在临床实践中,对OCT图像斑块组成的分析主要依赖于训练有素的专家对图像的解读,这是一个耗时、费力的过程,也是一个主观的过程。本研究的目的是利用卷积神经网络(CNN)方法从OCT图像中自动提取最佳特征信息,表征动脉粥样硬化斑块的三种基本成分(纤维、脂质和钙化)。本研究选取南京鼓楼医院2015年12月至2016年12月收治的20例患者的OCT图像。OCT阅读专家首先排除了包含括号的图像,然后对所有剩余的图像进行分割,得到1500个斑块OCT图像。专家标记每张图像中的斑块组成,将其切割成11*11的图像斑块,得到87390个斑块。其中75000个作为训练样本,其他的作为测试样本。测试集的分类精度作为评价标准。实验结果表明,CNN分类器对纤维斑块、钙化斑块和脂质斑块的平均分类准确率均在75%以上,特别是对纤维斑块的表征准确率可达到80%以上。该方法对冠状动脉OCT图像中动脉粥样硬化斑块组成的分析是有效且稳健的,为进一步的分割研究提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Coronary Atherosclerotic Plaque Composition Based on Convolutional Neural Network (CNN)
The tissue composition and morphological structure of atherosclerotic plaques determine its stability or vulnerability. Intravascular optical coherence tomography (IVOCT) has rapidly become the method of choice for assessing the pathology of the coronary arterial wall in vivo due to its superior resolution. However, in clinical practice, the analysis of plaque composition of OCT images mainly relies on the interpretation of images by well-trained experts, which is a time-consuming, labor-intensive procedure and it is also subjective. The purpose of this study is to use the Convolutional neural network (CNN) method to automatically extract the best feature information from the OCT images to characterize the three basic components of atherosclerotic plaque (fibrous, lipid, and calcification). This study selected the OCT images of 20 patients from Nanjing Drum Tower Hospital from 2015.12 to 2016.12. The OCT-reading expert first excluded the images containing the brackets, and then divided all the remaining images, resulting in 1500 plaque OCT images. The expert labeled plaque composition in each image, cutting it into 11*11 image patches and obtained 87390 patches. 75000 of them were set as training examples and the others were set for testing. The classification accuracy of the test set served as the evaluation criterion. The experimental results show that the average classification accuracy of the fibrous, calcification, and lipid patches by the CNN classifier was over 75%, especially to characterize the fibrous patches, whose accuracy could reach more than 80%. The proposed method is effective and robust in the analysis of atherosclerotic plaque composition in coronary OCT images, providing a base for further segmentation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Biomechanics
Molecular & Cellular Biomechanics CELL BIOLOGYENGINEERING, BIOMEDICAL&-ENGINEERING, BIOMEDICAL
CiteScore
1.70
自引率
0.00%
发文量
21
期刊介绍: The field of biomechanics concerns with motion, deformation, and forces in biological systems. With the explosive progress in molecular biology, genomic engineering, bioimaging, and nanotechnology, there will be an ever-increasing generation of knowledge and information concerning the mechanobiology of genes, proteins, cells, tissues, and organs. Such information will bring new diagnostic tools, new therapeutic approaches, and new knowledge on ourselves and our interactions with our environment. It becomes apparent that biomechanics focusing on molecules, cells as well as tissues and organs is an important aspect of modern biomedical sciences. The aims of this journal are to facilitate the studies of the mechanics of biomolecules (including proteins, genes, cytoskeletons, etc.), cells (and their interactions with extracellular matrix), tissues and organs, the development of relevant advanced mathematical methods, and the discovery of biological secrets. As science concerns only with relative truth, we seek ideas that are state-of-the-art, which may be controversial, but stimulate and promote new ideas, new techniques, and new applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信