{"title":"空间环境对设备和结构的影响——当前和未来的技术","authors":"Dionysios Tompros, D. Mouzakis","doi":"10.1177/15485129211033038","DOIUrl":null,"url":null,"abstract":"The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Space environment effects on equipment and structures—current and future technologies\",\"authors\":\"Dionysios Tompros, D. Mouzakis\",\"doi\":\"10.1177/15485129211033038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15485129211033038\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15485129211033038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Space environment effects on equipment and structures—current and future technologies
The space environment is extremely hostile to the spacecraft but also to the equipment it carries. The materials which are used to the external side of the spacecraft, the solar panels, the sensors, and the electronics circuits, suffer greatly from their exposure to it. Extreme temperatures, ultraviolet radiation, ionizing radiation from solar proton events and cosmic rays, atomic oxygen in LEO, as well as collisions with micrometeoroids and space debris are factors that degrade the stuff, multiply the mission cost, and increase the risk. Therefore, the state-of-art of material technology is needed. In this study, a set of materials and technologies are presented, which reduce the above-mentioned risks. Extreme temperatures, ultra-vacuum, atomic oxygen, and high-energy radiation including particles as well as energy sources (X- and gamma rays) are potential extreme exposure conditions. Testing and qualification of materials exposed to these extreme conditions is a difficult task, to enable the design and manufacturing of high-endurance reliable components to be used in the world’s most sophisticated satellite and spacecraft components, as well as in future endeavors into the vicinity of the Solar System.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.