关于非对称Ramsey性质的Kohayakawa-Kreuter猜想

Frank Mousset, R. Nenadov, W. Samotij
{"title":"关于非对称Ramsey性质的Kohayakawa-Kreuter猜想","authors":"Frank Mousset, R. Nenadov, W. Samotij","doi":"10.1017/S0963548320000267","DOIUrl":null,"url":null,"abstract":"Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties\",\"authors\":\"Frank Mousset, R. Nenadov, W. Samotij\",\"doi\":\"10.1017/S0963548320000267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

摘要对于固定图F 1,…,F r,证明了G(n, p)→(F 1,…,F r)的阈值函数的上界。这建立了Kohayakawa和Kreuter猜想的1-命题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties
Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信