{"title":"关于非对称Ramsey性质的Kohayakawa-Kreuter猜想","authors":"Frank Mousset, R. Nenadov, W. Samotij","doi":"10.1017/S0963548320000267","DOIUrl":null,"url":null,"abstract":"Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties\",\"authors\":\"Frank Mousset, R. Nenadov, W. Samotij\",\"doi\":\"10.1017/S0963548320000267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548320000267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548320000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards the Kohayakawa–Kreuter conjecture on asymmetric Ramsey properties
Abstract For fixed graphs F 1,…,F r , we prove an upper bound on the threshold function for the property that G(n, p) → (F 1,…,F r ). This establishes the 1-statement of a conjecture of Kohayakawa and Kreuter.