4D打印:技术概述和智能材料利用

Pub Date : 2023-01-01 DOI:10.3844/jmrsp.2023.1.14
Antreas Kantaros, T. Ganetsos, D. Piromalis
{"title":"4D打印:技术概述和智能材料利用","authors":"Antreas Kantaros, T. Ganetsos, D. Piromalis","doi":"10.3844/jmrsp.2023.1.14","DOIUrl":null,"url":null,"abstract":": 4D printing is a cutting-edge technology that allows for the creation of dynamic, self-assembling structures by utilizing cutting edge, newly introduced smart materials. It builds upon traditional 3D printing by adding the dimension of time, allowing printed objects to change shape or behavior over time. This is achieved through the use of smart materials, such as shape memory alloys or polymers, which respond to external stimuli such as heat or moisture. These materials are engineered to have specific properties that can be triggered by specific conditions such as temperature, humidity, light, or other physical forces. 4D printing enables the creation of structures that can adapt to their environment and perform specific functions, such as objects that change shape in response to temperature changes, or structures that can self-assemble in response to a specific trigger. Overall, 4D printing is an exciting and rapidly advancing technology that has the potential to revolutionize the way we design and create structures. The ability to create structures that can change shape or behavior over time opens up new possibilities for a wide range of applications. As the technology continues to evolve, we can expect to see more innovative uses of 4D printing in a wide range of scientific fields such as architecture, aerospace, and biomedical engineering demanding the creation of highly complex and dynamic structures that can adapt to changing environments.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"4D Printing: Technology Overview and Smart Materials Utilized\",\"authors\":\"Antreas Kantaros, T. Ganetsos, D. Piromalis\",\"doi\":\"10.3844/jmrsp.2023.1.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": 4D printing is a cutting-edge technology that allows for the creation of dynamic, self-assembling structures by utilizing cutting edge, newly introduced smart materials. It builds upon traditional 3D printing by adding the dimension of time, allowing printed objects to change shape or behavior over time. This is achieved through the use of smart materials, such as shape memory alloys or polymers, which respond to external stimuli such as heat or moisture. These materials are engineered to have specific properties that can be triggered by specific conditions such as temperature, humidity, light, or other physical forces. 4D printing enables the creation of structures that can adapt to their environment and perform specific functions, such as objects that change shape in response to temperature changes, or structures that can self-assemble in response to a specific trigger. Overall, 4D printing is an exciting and rapidly advancing technology that has the potential to revolutionize the way we design and create structures. The ability to create structures that can change shape or behavior over time opens up new possibilities for a wide range of applications. As the technology continues to evolve, we can expect to see more innovative uses of 4D printing in a wide range of scientific fields such as architecture, aerospace, and biomedical engineering demanding the creation of highly complex and dynamic structures that can adapt to changing environments.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/jmrsp.2023.1.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmrsp.2023.1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

: 4D打印是一项尖端技术,可以利用最新推出的智能材料创造动态、自组装的结构。它建立在传统3D打印的基础上,增加了时间的维度,允许打印对象随着时间的推移改变形状或行为。这是通过使用智能材料来实现的,例如形状记忆合金或聚合物,它们可以对热或潮湿等外部刺激做出反应。这些材料被设计成具有特定的性能,可以由特定的条件(如温度、湿度、光或其他物理力)触发。4D打印可以创建能够适应环境并执行特定功能的结构,例如响应温度变化而改变形状的物体,或者响应特定触发可以自组装的结构。总的来说,4D打印是一项令人兴奋和快速发展的技术,它有可能彻底改变我们设计和创建结构的方式。随着时间的推移,创造可以改变形状或行为的结构的能力为广泛的应用开辟了新的可能性。随着技术的不断发展,我们可以期待在建筑、航空航天和生物医学工程等广泛的科学领域看到更多4D打印的创新用途,这些领域要求创建高度复杂和动态的结构,以适应不断变化的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
4D Printing: Technology Overview and Smart Materials Utilized
: 4D printing is a cutting-edge technology that allows for the creation of dynamic, self-assembling structures by utilizing cutting edge, newly introduced smart materials. It builds upon traditional 3D printing by adding the dimension of time, allowing printed objects to change shape or behavior over time. This is achieved through the use of smart materials, such as shape memory alloys or polymers, which respond to external stimuli such as heat or moisture. These materials are engineered to have specific properties that can be triggered by specific conditions such as temperature, humidity, light, or other physical forces. 4D printing enables the creation of structures that can adapt to their environment and perform specific functions, such as objects that change shape in response to temperature changes, or structures that can self-assemble in response to a specific trigger. Overall, 4D printing is an exciting and rapidly advancing technology that has the potential to revolutionize the way we design and create structures. The ability to create structures that can change shape or behavior over time opens up new possibilities for a wide range of applications. As the technology continues to evolve, we can expect to see more innovative uses of 4D printing in a wide range of scientific fields such as architecture, aerospace, and biomedical engineering demanding the creation of highly complex and dynamic structures that can adapt to changing environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信