{"title":"之字形碳化硅纳米带的分子动力学模拟","authors":"H. Nguyen","doi":"10.15625/0868-3166/15874","DOIUrl":null,"url":null,"abstract":"The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon\",\"authors\":\"H. Nguyen\",\"doi\":\"10.15625/0868-3166/15874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.\",\"PeriodicalId\":10571,\"journal\":{\"name\":\"Communications in Physics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0868-3166/15874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/15874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular Dynamic Simulation of Zigzag Silicon Carbide Nanoribbon
The heating process of zigzag silicon carbide nanoribbon (SiCNR) is studied via molecular dynamics (MD) simulation. The initial model contained 10000 atoms is heating from 50K to 6000K to study the structural evolution of zigzag SiCNR. The melting point is defined at 4010K, the phase transition from solid to liquid exhibits the first-order type. The mechanism of structural evolution upon heating is studied based on the radiral distribution functions, coordination number, ring distributions, and angle distributions.