K. Han, Seungwook Choi, T. Yim, Seungwook Choi, J. Baek, S. Ahn, N. Lee, Siyoung Choi, Ho-Kyu Kang, E. Jung
{"title":"可靠集成强大的多孔超低k (ULK),用于先进的BEOL互连","authors":"K. Han, Seungwook Choi, T. Yim, Seungwook Choi, J. Baek, S. Ahn, N. Lee, Siyoung Choi, Ho-Kyu Kang, E. Jung","doi":"10.1109/IITC.2013.6615552","DOIUrl":null,"url":null,"abstract":"In order to address the increasing RC and reliability challenges at the advanced technology nodes, a new robust ULK was developed that incorporates the bridging carbon atoms (Si-[CH2]x-Si) in p-SiOCH matrix. Its elastic modulus and plasma damage resistance were improved more than 40% at the same dielectric constant than the commercially available ULK. These improvements are attributed to 80% higher atoms that exist in both Si-[CH2]x-Si and Si-CH3 structures with its pore size 23% smaller. Furthermore, its superb properties resulted in 3~4% capacitance reduction, and improvement of TDDB and EM TTF (time to failure) by 2 order and 2~3 times, respectively, on an advanced BEOL vehicle.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"8 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reliable integration of robust porous ultra low-k (ULK) for the advanced BEOL interconnect\",\"authors\":\"K. Han, Seungwook Choi, T. Yim, Seungwook Choi, J. Baek, S. Ahn, N. Lee, Siyoung Choi, Ho-Kyu Kang, E. Jung\",\"doi\":\"10.1109/IITC.2013.6615552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to address the increasing RC and reliability challenges at the advanced technology nodes, a new robust ULK was developed that incorporates the bridging carbon atoms (Si-[CH2]x-Si) in p-SiOCH matrix. Its elastic modulus and plasma damage resistance were improved more than 40% at the same dielectric constant than the commercially available ULK. These improvements are attributed to 80% higher atoms that exist in both Si-[CH2]x-Si and Si-CH3 structures with its pore size 23% smaller. Furthermore, its superb properties resulted in 3~4% capacitance reduction, and improvement of TDDB and EM TTF (time to failure) by 2 order and 2~3 times, respectively, on an advanced BEOL vehicle.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"8 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliable integration of robust porous ultra low-k (ULK) for the advanced BEOL interconnect
In order to address the increasing RC and reliability challenges at the advanced technology nodes, a new robust ULK was developed that incorporates the bridging carbon atoms (Si-[CH2]x-Si) in p-SiOCH matrix. Its elastic modulus and plasma damage resistance were improved more than 40% at the same dielectric constant than the commercially available ULK. These improvements are attributed to 80% higher atoms that exist in both Si-[CH2]x-Si and Si-CH3 structures with its pore size 23% smaller. Furthermore, its superb properties resulted in 3~4% capacitance reduction, and improvement of TDDB and EM TTF (time to failure) by 2 order and 2~3 times, respectively, on an advanced BEOL vehicle.